首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
[reaction: see text] The reaction of CH(4) with CO(2) has been performed in anhydrous acids using VO(acac)(2) and K(2)S(2)O(8) as promoters. NMR analysis establishes that the primary product is a mixed anhydride of acetic acid and the acid solvent. In sulfuric acid, the overall reaction is CH(4) + CO(2) + SO(3) --> CH(3)C(O)-O-SO(3)H. Hydrolysis of the mixed anhydride produces acetic acid and the solvent acid. When trifluoroacetic acid is the solvent, acetic acid is primarily formed via the reaction CH(4) + CF(3)COOH --> CH(3)COOH + CHF(3).  相似文献   

2.
The CH3 + OH bimolecular reaction and the dissociation of methanol are studied theoretically at conditions relevant to combustion chemistry. Kinetics for the CH3 + OH barrierless association reaction and for the H + CH2OH and H + CH3O product channels are determined in the high-pressure limit using variable reaction coordinate transition state theory and multireference electronic structure calculations to evaluate the fragment interaction energies. The CH3 + OH --> 3CH2 + H2O abstraction reaction and the H2 + HCOH and H2 + H2CO product channels feature localized dynamical bottlenecks and are treated using variational transition state theory and QCISD(T) energies extrapolated to the complete basis set limit. The 1CH2 + H2O product channel has two dynamical regimes, featuring both an inner saddle point and an outer barrierless region, and it is shown that a microcanonical two-state model is necessary to properly describe the association rate for this reaction over a broad temperature range. Experimental channel energies for the methanol system are reevaluated using the Active Thermochemical Tables (ATcT) approach. Pressure dependent, phenomenological rate coefficients for the CH3 + OH bimolecular reaction and for methanol decomposition are determined via master equation simulations. The predicted results agree well with experimental results, including those from a companion high-temperature shock tube determination for the decomposition of methanol.  相似文献   

3.
The E(CO)2 elimination reactions of alkyl hydroperoxides proceed via abstraction of an alpha-hydrogen by a base: X(-) + R(1)R(2)HCOOH --> HX + R(1)R(2)C=O + HO(-). Efficiencies and product distributions for the reactions of the hydroxide anion with methyl, ethyl, and tert-butyl hydroperoxides are studied in the gas phase. On the basis of experiments using three isotopic analogues, HO(-) + CH3OOH, HO(-) + CD3OOH, and H(18)O(-) + CH3OOH, the overall intrinsic reaction efficiency is determined to be 80% or greater. The E(CO)2 decomposition is facile for these methylperoxide reactions, and predominates over competing proton transfer at the hydroperoxide moiety. The CH3CH2OOH reaction displays a similar E(CO)2 reactivity, whereas proton transfer and the formation of HOO(-) are the exclusive pathways observed for (CH3)3COOH, which has no alpha-hydrogen. All results are consistent with the E(CO)2 mechanism, transition state structure, and reaction energy diagrams calculated using the hybrid density functional B3LYP approach. Isotope labeling for HO(-) + CH3OOH also reveals some interaction between H2O and HO(-) within the E(CO)2 product complex [H2O...CH2=O...HO(-)]. There is little evidence, however, for the formation of the most exothermic products H2O + CH2(OH)O(-), which would arise from nucleophilic condensation of CH2=O and HO(-). The results suggest that the product dynamics are not totally statistical but are rather direct after the E(CO)2 transition state. The larger HO(-) + CH3CH2OOH system displays more statistical behavior during complex dissociation.  相似文献   

4.
One of the most abundant carboxylic acids measured in the atmosphere is acetic acid (CH(3)C(O)OH), present in rural, urban, and remote marine environments in the low-ppb range. Acetic acid concentrations are not well reproduced in global 3-D atmospheric models because of the poor inventory of sources and sinks to model its global distribution. To understand the complete oxidation of acetic acid in the atmosphere initiated by OH radicals, ab initio calculations are performed to describe in detail the energetics of the reaction potential energy surface (PES). The proposed reaction mechanism suggests that the CH(3)C(O)OH + OH reaction takes place via three pathways: the addition of OH to the central carbon, the abstraction of a methyl hydrogen, and the abstraction of an acidic hydrogen. The PES is characterized by prereactive H-complexes, transition states, and more interestingly unique radical-mediated isomerization reactions. From the analysis of the energetics, acetic acid atmospheric oxidation will proceed mainly via the abstraction of the acidic hydrogen, consistent with previous experimental and theoretical studies. The major byproducts from each pathway are identified. Glyoxylic acid is suggested to be a major byproduct of the atmospheric oxidation of acetic acid. The atmospheric fate of glyoxylic acid is discussed.  相似文献   

5.
The mechanism for the O + CH2OH reaction was investigated by various ab initio quantum chemistry methods. For the chemical activation mechanism, that is, the addition/elimination path, the couple-cluster methods including CCSD and CCSD(T) were employed with the cc-pVXZ (X = D, T, Q, 5) basis sets. For the abstraction channels, multireference methods including CASSCF, CASPT2, and MRCISD were used with the cc-pVDZ and cc-pVTZ basis sets. It has been shown that the production of H + HCOOH is the major channel in the chemical activation mechanism. The minor channels include HCO + H2O and OH + CH2O. The hydrogen abstraction by an O atom from the CH2OH radical produces either OH + CH2O or OH + HCOH. Moreover, the two abstraction reactions are essentially barrierless processes. The rate constants for the association of O with CH2OH have been calculated using the flexible transition state theory. A weak negative temperature dependence of the rate constants is found in the range 250-1000 K. Furthermore, it is estimated that the abstraction processes also play an important role in the O + CH2OH reaction. Additionally, the falloff behavior for the OCH2OH --> H + HCOOH reaction has been investigated. The present theoretical results are compared to the experimental measurements to understand the mechanism and kinetic behavior of the O + CH2OH reaction and the unimolecular reaction of the OCH2OH radical.  相似文献   

6.
Using a crossed laser-molecular beam scattering apparatus and tunable photoionization detection, these experiments determine the branching to the product channels accessible from the 2-hydroxyethyl radical, the first radical intermediate in the addition reaction of OH with ethene. Photodissociation of 2-bromoethanol at 193 nm forms 2-hydroxyethyl radicals with a range of vibrational energies, which was characterized in our first study of this system ( J. Phys. Chem. A 2010 , 114 , 4934 ). In this second study, we measure the relative signal intensities of ethene (at m/e = 28), vinyl (at m/e = 27), ethenol (at m/e = 44), formaldehyde (at m/e = 30), and acetaldehyde (at m/e = 44) products and correct for the photoionization cross sections and kinematic factors to determine a 0.765:0.145:0.026:0.063:<0.01 branching to the OH + C(2)H(4), H(2)O + C(2)H(3), CH(2)CHOH + H, H(2)CO + CH(3), and CH(3)CHO + H product asymptotes. The detection of the H(2)O + vinyl product channel is surprising when starting from the CH(2)CH(2)OH radical adduct; prior studies had assumed that the H(2)O + vinyl products were solely from the direct abstraction channel in the bimolecular collision of OH and ethene. We suggest that these products may result from a frustrated dissociation of the CH(2)CH(2)OH radical to OH + ethene in which the C-O bond begins to stretch, but the leaving OH moiety abstracts an H atom to form H(2)O + vinyl. We compare our experimental branching ratio to that predicted from statistical microcanonical rate constants averaged over the vibrational energy distribution of our CH(2)CH(2)OH radicals. The comparison suggests that a statistical prediction using 1-D Eckart tunneling underestimates the rate constants for the branching to the product channels of OH + ethene, and that the mechanism for the branching to the H(2)O + vinyl channel is not adequately treated in such theories.  相似文献   

7.
We report a detailed theoretical study of the hydrogen abstraction reaction from methanol by atomic hydrogen. The study includes the analysis of thermal rate constants, branching ratios, and kinetic isotope effects. Specifically, we have performed high-level computations at the MC3BB level together with direct dynamics calculations by canonical variational transition state theory (CVT) with the microcanonically optimized multidimensional tunneling (μOMT) transmission coefficient (CVT/μOMT) to study both the CH(3)OH+H→CH(2)OH+H(2) (R1) reaction and the CH(3)OH+H→CH(3)O+H(2) (R2) reaction. The CVT/μOMT calculations show that reaction R1 dominates in the whole range 298≤T (K)≤2500 and that anharmonic effects on the torsional mode about the C-O bond are important, mainly at high temperatures. The activation energy for the total reaction sum of R1 and R2 reactions changes substantially with temperature and, therefore, the use of straight-line Arrhenius plots is not valid. We recommend the use of new expressions for the total R1 + R2 reaction and for the R1 and R2 individual reactions.  相似文献   

8.
In this paper, we report a detailed analysis of the breakdown kinetic mechanism for methyl butanoate (MB) using theoretical approaches. Electronic structures and structure-related molecular properties of reactants, intermediates, products, and transition states were explored at the BH&HLYP/cc-pVTZ level of theory. Rate constants for the unimolecular and bimolecular reactions in the temperature range of 300-2500 K were calculated using Rice-Ramsperger-Kassel-Marcus and transition state theories, respectively. Thirteen pathways were identified leading to the formation of small compounds such as CH(3), C(2)H(3), CO, CO(2), and H(2)CO. For the initial formation of MB radicals, H, CH(3), and OH were considered as reactive radicals participating in hydrogen abstraction reactions. Kinetic simulation results for a high temperature pyrolysis environment show that MB radicals are mainly produced through hydrogen abstraction reactions by H atoms. In addition, the C(O)OCH(3) = CO + CH(3)O reaction is found to be the main source of CO formation. The newly computed kinetic sub-model for MB breakdown is recommended as a core component to study the combustion of oxygenated species.  相似文献   

9.
The reaction for CH3CH2+O(3P) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single-point calculations for all the stationary points were carried out at the QCISD(T)/6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major products are the CH2O+CH3, CH3CHO+H and CH2CH2+OH in the reaction. For the products CH2O+CH3 and CH3CHO+H, the major production channels are A1: (R)→IM1→TS3→(A) and B1: (R)→IM1→TS4→(B), respectively. The majority of the products CH2CH2+OH are formed via the direct abstraction channels C1 and C2: (R)→TS1(TS2)→(C). In addition, the results suggest that the barrier heights to form the CO reaction channels are very high, so the CO is not a major product in the reaction.  相似文献   

10.
The mechanism for the atmospheric oxidation of DMSO has been studied. For the first time, all the possible channels in the DMSO + OH reaction are studied together theoretically, and their corresponding rate constants have been evaluated under the variational transition-state formalism. Three different channels have been characterized: an addition-elimination process to form MSIA (CH3SOOH) and CH3, a H-abstraction pathway to give CH3SOCH2 and H2O, and a nonkinetically relevant S(N)2-type reaction to form methanol and CH3SO. In agreement with previous experimental and theoretical works, the main product in the DMSO + OH reaction turns out to be the MSIA, with a branching ratio at 298.15 K around 97%. The effects of pressure in the global rate constant have also been analyzed.  相似文献   

11.
A direct ab initio dynamics method was carried out for the reaction CH3OCl + OH --> products. Three abstraction channels from chlorine atom, in-plane hydrogen, and out-of-plane hydrogen atoms at the CH3 group have been found. The optimized geometries and frequencies of the stationary points and the minimum-energy paths (MEPs) were calculated at the MP2/6-311G(d,p) level. To improve the reaction enthalpy and potential barrier, single-point calculations were made at three higher levels of theory, the approximate QCISD(T)/6-311++G(3df,2pd), G3, and G3(MP2) levels. Furthermore, the rate constants for three abstraction channels were evaluated using canonical variational transition state theory (CVT) with the small-curvature tunneling correction (SCT) over a wide temperature range of 220-2000 K at above three higher theory levels, respectively. The calculated rate constants as well as branching rates are in reasonable agreement with the experimental values in the temperature region 250-341 K. The present results indicate H-abstraction especially from out-of-plane hydrogen is the main reaction pathway, while Cl-abstraction is much less competitive.  相似文献   

12.
A detailed computational study is performed on the radical-molecule reaction between the vinyl radical (C2H3) and formaldehyde (H2CO), for which only the direct hydrogen abstraction channel has been considered by previous and very recent theoretical studies. At the Gaussian-3//B3LYP/6-31G(d) and CBS-QB3 levels, the direct H-abstraction forming C2H4 + HCO has barriers of 3.9 and 4.7 kcal/mol, respectively. The addition barrier to form H2CCHCH2O has barriers of 2.8 and 2.3 kcal/mol, respectively. Subsequently, there are two highly competitive dissociation pathways for H2CCHCH2O: One is the formation of the direct H-extrusion product H2CCHCHO + H, and the other is the formation of C2H4 + HCO via the intermediate H2CCH2CHO. Surely, the released energy is large enough to drive the secondary dissociation of HCO to H + CO. Because the involved transition states and intermediates of the H2CCHCH2O evolution all lie energetically lower than the entrance addition transition state, the addition-elimination is more competitive than the direct H-transfer for the C2H3 + H2CO reaction, in contrast to previous expectation. The present results can be useful for future experimental investigation on the title reaction.  相似文献   

13.
In the present work the potential energy surface (PES) corresponding to the different initiation routes of the oxidation mechanism of DMS by hydroxyl radical in the absence of O(2) has been studied, and connections among the different stationary points have been established. Single-point high level electronic structure calculations at lower level optimized geometries have been shown to be necessary to assure convergence of energy barriers and reaction energies. Our results demonstrate that the oxidation of DMS by OH turns out to be initiated via three channels: a hydrogen abstraction channel that through a saddle point structure finally leads to CH(3)SCH(2) + H(2)O, an addition-elimination channel that firstly leads to an adduct complex (AD) and then via an elimination saddle point structure finally gives CH(3)SOH and CH(3) products, and a third channel that through a concerted pathway leads to CH(3)OH and CH(3)S. The H-abstraction and the addition-elimination channels initiate by a common pathway that goes through the same reactant complex (RC). Our theoretical results agree quite well with the branching ratios experimentally assigned to the formation of the different products. Finally, the calculated equilibrium constants of the formation of the complex AD and the hexadeuterated complex AD from the corresponding reactants, as a function of the temperature, are in good accordance with the experimental values.  相似文献   

14.
The hydrogen abstraction reactions C2H + CH3CN --> products (R1), C2H + CH3CH2CN --> products (R2), and C2H + CH3CH2CH2CN --> products (R3) have been investigated by dual-level generalized transition state theory. Optimized geometries and frequencies of all the stationary points and extra points along the minimum-energy path (MEP) are performed at the BH&H-LYP and MP2 methods with the 6-311G(d, p) basis set, and the energy profiles are further refined at the MC-QCISD level of theory. The rate constants are evaluated using canonical variational transition state theory (CVT) with a small-curvature tunneling correction (SCT) over a wide temperature range 104-2000 K. The calculated CVT/SCT rate constants are in good agreement with the available experimental values. Our calculations show that for reaction R2, the alpha-hydrogen abstraction channel and beta-hydrogen abstraction channel are competitive over the whole temperature range. For reaction R3, the gamma-hydrogen abstraction channel is preferred at lower temperatures, while the contribution of beta-hydrogen abstraction will become more significant with a temperature increase. The branching ratio to the alpha-hydrogen abstraction channel is found negligible over the whole temperature range.  相似文献   

15.
Pd催化甲醇裂解制氢的反应机理   总被引:1,自引:0,他引:1  
基于密度泛函理论(DFT), 研究了甲醇在Pd(111)面上首先发生O—H键断裂的反应历程(CH3OH(s)→CH3O(s)+H(s)→CH2O(s)+2H(s)→CHO(s)+3H(s)→CO(s)+4H(s)). 优化了裂解过程中各反应物、中间体、过渡态和产物的几何构型, 获得了反应路径上各物种的吸附能及各基元反应的活化能数据. 另外, 对甲醇发生C—O键断裂生成CH3(s)和OH(s)的分解过程也进行了模拟计算. 计算结果表明, O—H键的断裂(活化能为103.1 kJ·mol-1)比C—O键的断裂(活化能为249.3 kJ·mol-1)更容易; 甲醇在Pd(111)面上裂解的主要反应历程是: 甲醇首先发生O—H键的断裂, 生成甲氧基中间体(CH3O(s)), 然后甲氧基中间体再逐步脱氢生成CO(s)和H(s). 甲醇发生O—H键断裂的活化能为103.1 kJ·mol-1, 甲氧基上脱氢的活化能为106.7 kJ·mol-1, 两者均有可能是整个裂解反应的速控步骤.  相似文献   

16.
This work investigates the unimolecular dissociation of the methoxycarbonyl, CH(3)OCO, radical. Photolysis of methyl chloroformate at 193 nm produces nascent CH(3)OCO radicals with a distribution of internal energies, determined by the velocities of the momentum-matched Cl atoms, that spans the theoretically predicted barriers to the CH(3)O + CO and CH(3) + CO(2) product channels. Both electronic ground- and excited-state radicals undergo competitive dissociation to both product channels. The experimental product branching to CH(3) + CO(2) from the ground-state radical, about 70%, is orders of magnitude larger than Rice-Ramsperger-Kassel-Marcus (RRKM)-predicted branching, suggesting that previously calculated barriers to the CH(3)OCO --> CH(3) + CO(2) reaction are dramatically in error. Our electronic structure calculations reveal that the cis conformer of the transition state leading to the CH(3) + CO(2) product channel has a much lower barrier than the trans transition state. RRKM calculations using this cis transition state give product branching in agreement with the experimental branching. The data also suggest that our experiments produce a low-lying excited state of the CH(3)OCO radical and give an upper limit to its adiabatic excitation energy of 55 kcal/mol.  相似文献   

17.
Density functional theory (DFT) calculations are carried out to investigate partial oxidation of propylene over neutral VO 3 clusters. C=C bond cleavage products CH 3CHO + VO 2CH 2 and HCHO + VO 2CHCH 3 can be formed overall barrierlessly from the reaction of propylene with VO 3 at room temperature. Formation of hydrogen transfer products H 2O + VO 2C 3H 4, CH 2=CHCHO + VO 2H 2, CH 3CH 2CHO + VO 2, and (CH 3) 2CO + VO 2 is subject to tiny (0.01 eV) or small (0.06 eV, 0.19 eV) overall free energy barriers, although their formation is thermodynamically more favorable than the formation of C=C bond cleavage products. These DFT results are in agreement with recent experimental observations. VO 3 regeneration processes at room temperature are also investigated through reaction of O 2 with the CC bond cleavage products VO 2CH 2 and VO 2CHCH 3. The following barrierless reaction channels are identified: VO 2CH 2 + O 2 --> VO 3 + CH 2O; VO 2CH 2 + O 2 --> VO 3C + H 2O, VO 3C + O 2 --> VO 3 + CO 2; VO 2CHCH 3 + O 2 --> VO 3 + CH 3CHO; and VO 2CHCH 3 + O 2 --> VO 3C + CH 3OH, VO 3C + O 2 --> VO 3 + CO 2. The kinetically most favorable reaction products are CH 3CHO, H 2O, and CO 2 in the gas phase model catalytic cycles. The results parallel similar behavior in the selective oxidation of propylene over condensed phase V 2O 5/SiO 2 catalysts.  相似文献   

18.
Spin-orbit coupling (SOC) induced intersystem crossing (ISC) has long been believed to play a crucial role in determining the product distributions in the O(3P) + C2H4 reaction. In this paper, we present the first nonadiabatic dynamics study of the title reaction at two center-of-mass collision energies: 0.56 eV, which is barely above the H-atom abstraction barrier on the triplet surface, and 3.0 eV, which is in the hyperthermal regime. The calculations were performed using a quasiclassical trajectory surface hopping (TSH) method with the potential energy surface generated on the fly at the unrestricted B3LYP/6-31G(d,p) level of theory. To simplify our calculations, nonadiabatic transitions were only considered when the singlet surface intersects the triplet surface. At the crossing points, Landau-Zener transition probabilities were computed assuming a fixed spin-orbit coupling parameter, which was taken to be 70 cm-1 in most calculations. Comparison with a recent crossed molecular beam experiment at 0.56 eV collision energy shows qualitative agreement as to the primary product branching ratios, with the CH3 + CHO and H + CH2CHO channels accounting for over 70% of total product formation. However, our direct dynamics TSH calculations overestimate ISC so that the total triplet/singlet ratio is 25:75, compared to the observed 43:57. Smaller values of SOC reduce ISC, resulting in better agreement with the experimental product relative yields; we demonstrate that these smaller SOC values are close to being consistent with estimates based on CASSCF calculations. As the collision energy increases, ISC becomes much less important and at 3.0 eV, the triplet to singlet branching ratio is 71:29. As a result, the triplet products CH2 + CH2O, H + CH2CHO and OH + C2H3 dominate over the singlet products CH3 + CHO, H2 + CH2CO, etc.  相似文献   

19.
Bergeat A  Calvo T  Caralp F  Fillion JH  Dorthe G  Loison JC 《Faraday discussions》2001,(119):67-77; discussion 121-43
The multichannel CH + O2 reaction was studied at room temperature, in a low-pressure fast-flow reactor. CH radical was obtained from the reaction of CHBr3 with potassium atoms. The overall rate constant was determined from the decay of CH with distance, O2 being introduced in excess. The result, after corrections for axial and radial diffusion, is k = (3.6 +/- 0.5) x 10(-11) cm3 molecule-1 s-1. The OH(A2 sigma +) chemiluminescence was observed, confirming the existence of the OH + CO channel. The vibrational population distribution of OH(A2 sigma +) is 32% in the v' = 1 level and 68% in the v' = 0 level (+/- 5%). The relative atomic concentrations were determined by resonance fluorescence in the vacuum ultraviolet. A ratio of 1.4 +/- 0.2 was found between the H atom density (H atoms being produced from the H + CO2 channel and from the HCO dissociation) and the O atom density (O + HCO). Ab initio calculations of the transition structures have been performed, associated with statistical estimations. The estimated branching ratios are: O + HCO, 20%; O + H + CO, 30%; H + CO2, 30%; and CO + OH, 20%.  相似文献   

20.
The mechanism for the CH3+C2H5OH reaction has been investigated by the modified Gaussian-2 method based on the geometric parameters of the stationary points optimized at the B3LYP/6-311+G(d,p) level of theory. Five transition states have been identified for the production of CH4+CH3CHOH (TS1), CH4+CH3CH2O (TS2), CH4+CH2CH2OH (TS3), CH3OH+CH3CH2 (TS4), and CH3CH2OCH3+H (TS5) with the corresponding barriers 12.0, 13.2, 16.0, 44.7, and 49.9 kcal/mol, respectively. The predicted rate constants and branching ratios for the three lower-energy H-abstraction reactions were calculated using the conventional and variational transition state theory with quantum-mechanical tunneling corrections for the temperature range 300-3000 K. The predicted total rate constant, kt=8.36 x 10(-76) T(20.00) exp(5258/T) cm3 mol(-1) s(-1) (300-600 K) and 6.10 x 10(-25) T(4.10)exp(-4058/T) cm3 mol(-1) s(-1) (600-3000 K), agrees closely with existing experimental data in the temperature range 403-523 K. Similarly, the predicted rate constants for CH3+CH3CD2OH and CD3+C2H5OD are also in reasonable agreement with available low temperature kinetic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号