首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using a catalyst-lean thin-film RDE method, the fast kinetics of the hydrogen oxidation reaction (HOR) on highly dispersed Pt nanoparticle electrocatalysts can be determined, free from the interference of the mass transport of H(2) molecules in solution. Measurements with carbon-supported Pt nanoparticles of different sizes thus allow revealing the particle size effect of Pt for the HOR. It is shown that there is a "negative" particle size effect of Pt on the kinetics of HOR, i.e., the exchange current density j(0) decreases with the increased dispersion (i.e. decreased mean particle size). A maximum mass activity of Pt for the HOR is found at particle sizes of 3-3.5 nm. The observed particle size effect is interpreted in terms of the size dependent distribution of surface atoms on the facets and edges, which is implied by the voltammetric responses of Pt/C catalysts with differently sized Pt particles. The accompanied decrease in the HOR activity with the increase in the edge atom fraction suggests that the edge atoms on the surface of Pt nanoparticles are less active for the HOR than those on the facets.  相似文献   

2.
Using polyvinylpyrrolidone (PVP) as a stabilizing agent, stable colloidal solutions of platinum nanoparticles of different size distributions have been prepared by reducing H2PtCl6 with hydrogen. The UV-vis adsorption peaks at 258 nm due to the adsorption of Pt(IV) species disappear completely, indicating that the Pt(IV) species has been used up and colloidal Pt has been formed. The electrodes have been prepared from aqueous Pt colloids and glassy carbon (GC). The effect of platinum particle size of Pt/GC catalyst electrode on the electrocatalytic oxidation of carbon monoxide has been investigated. The voltammetry shows that a higher potential is needed for the oxidation of absorbed carbon monoxide with a decrease of the platinum particle size for particle sizes larger than 1 nm. But for particle sizes smaller than 1 nm, the potential remains constant while the activity decreases with decreasing the size. The snowlike, well-dispersed, and highly ordered platinum nanoparticles demonstrate high activity in the oxidation reaction of carbon monoxide. The reason may be due to the geometric structure of platinum nanoparticles.  相似文献   

3.
Realization of the hydrogen economy relies on effective hydrogen production, storage, and utilization. The slow kinetics of hydrogen evolution and oxidation reaction (HER/HOR) in alkaline media limits many practical applications involving hydrogen generation and utilization, and how to overcome this fundamental limitation remains debatable. Here we present a kinetic study of the HOR on representative catalytic systems in alkaline media. Electrochemical measurements show that the HOR rate of Pt‐Ru/C and Ru/C systems is decoupled to their hydrogen binding energy (HBE), challenging the current prevailing HBE mechanism. The alternative bifunctional mechanism is verified by combined electrochemical and in situ spectroscopic data, which provide convincing evidence for the presence of hydroxy groups on surface Ru sites in the HOR potential region and its key role in promoting the rate‐determining Volmer step. The conclusion presents important references for design and selection of HOR catalysts.  相似文献   

4.
《中国化学快报》2023,34(4):107622
Controlling the particle size of catalyst to understand the active sites is the key to design efficient electrocatalysts toward hydrogen electrode reactions including hydrogen oxidation and evolution (HOR/HER). Herein, the hydrogen and hydroxyl adsorption on Ru/C could be effectively tuned for HOR/HER by simple controlling the particle sizes. It is found that the metallic Ru (Ru0) is the active site for HOR/HER, while oxidized Ru (Rux+) will hinder the adsorption and desorption of hydrogen on the catalyst. For the HOR, catalyst with small particles is more efficient, due to it is a three-phase interface reaction of gas on the surface of the catalyst. For the HER, the metallic state of Ru is crucial. The deconvolution of hydrogen peaks indicates that the catalytic sites with low hydrogen binding energy (HBE) shoulder the majority of the HOR activity. CO stripping curve further demonstrates that the stronger hydroxyl species (OHad) affinity is beneficial to promote the HOR performance. The results indicate that the design of efficient HOR/HER catalyst should focus on the balance between particle size and metallic states.  相似文献   

5.
Exploring highly efficient electrocatalysts and understanding the reaction mechanisms for hydrogen electrocatalysis,including hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) in alkaline media are conducive to the conversion of hydrogen energy.Herein,we reported a new strategy to boost the HER/HOR performances of ruthenium (Ru) nanoparticles through nitrogen (N) modification.The obtained N-Ru/C exhibit remarkable catalytic performance,with normalized HOR exchange current d...  相似文献   

6.
This work demonstrates the outstanding performance of alloyed Au_1 Pt_1 nanoparticles on hydrogen oxidation reaction(HOR) in alkaline solution. Due to the weakened hydrogen binding energy caused by uniform incorporation of Au, the alloyed Au_1 Pt_1/C nanoparticles exhibit superior HOR activity than commercial Pt Ru/C. On the contrary, the catalytic performance of the phase-segregated Au_2 Pt_1/C and Au_1 Pt_1/C bimetallic nanoparticles in HOR is significantly worse. Moreover, Au_1 Pt_1/C shows a remarkable durability with activity dropping only 4% after 3000 CV cycles, while performance attenuation of commercial Pt Ru/C is high up to 15% under the same condition. Our results indicate that the alloyed Au_1 Pt_1/C is a promising candidate to substitute commercial Pt Ru/C for hydrogen oxidation reaction in alkaline electrolyte.  相似文献   

7.
By coupling a Pt‐catalyzed fluorogenic reaction with the Pt‐electrocatalyzed hydrogen‐oxidation reaction (HOR), we combine single‐molecule fluorescence microscopy with traditional electrochemical methods to study the real‐time deactivation kinetics of a Pt/C electrocatalyst at single‐particle level during electrocatalytic hydrogen‐oxidation reaction. The decay of the catalytic performance of Pt/C could be mainly attributed to the electrocatalysis‐induced etching or dissolution of Pt nanoparticles. Spontaneous regeneration of activity and incubation period of the Pt electrocatalyst were also observed at single‐particle level. All these new insights are practically useful for the understanding and rational design of highly efficient electrocatalysts for application in fuel cells.  相似文献   

8.
Developing high activity catalysts for hydrogen oxidation reaction(HOR)under alkaline condition remains a challenge in the exchange membrane fuel cell(AEMFC).Herein,we report that the activity of carbon-supported platinum(Pt/C)towards the hydrogen oxidation reaction(HOR)in alkaline media can be remarkably enhanced by simple immersion of Pt/C in nickel chloride solution.The adsorption of hydrogen on the catalyst surface is weakened by modification of nickel.The HOR activity on the Pt/C after immersion possesses an excellent mass current density of 33.4 A/gmetal,which is 18%higher than that(28.3 A/gmetal)on Pt/C.  相似文献   

9.
Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.  相似文献   

10.
Graphene oxides (GOs) are popular catalyst supports for precious metals in nanoparticle form. The hydrogen oxidation reaction (HOR) and the hydrogen evolution reaction (HER) on individual GO platelets decorated with Pd nanoparticles (Pd/GOs) were investigated. The results suggest that the catalytic activity is confined to the zone physically close to the point of electrical contact between platelet and electrode with just a fraction of the platelet active.  相似文献   

11.
随着能源需求的进一步增多和化石能源的大幅度减少,新型环境友好型能源成为近十年许多科研工作者的着力点.其中,燃料电池作为一种高效率、高能量密度、环境友好型能源引起了人们的关注.氢氧燃料电池研究最早、应用最早,具有得天独厚的优势.此外,由于近些年CO2的大量排放,造成了严重的温室效应,其处理也是一个严峻的课题.谢和平课题组提出的CO2矿化发电,不仅可以处理CO2,也可以作为新型能源应用,前景广阔.而不论是氢氧燃料电池还是CO2矿化电池,其阳极反应均为氢气氧化反应(HOR).Pt作为目前仍无法取代的HOR反应催化剂,不仅全球储量有限且价格昂贵,所以,寻找一种价格低廉催化性能好的催化剂成为这些新能源进一步应用的重要课题之一.对此人们进行了大量探索,主要包括尝试不同的载体、改变金属颗粒尺寸形貌等.其中,伽伐尼置换法对于制备纳米核壳结构催化剂以及降低金属颗粒尺寸、增加比表面积均有很大帮助.基于此,本文采用浸渍法和伽伐尼置换法制备了用Pt修饰Ni/C的纳米催化剂,使得纳米级活性金属均匀分散在载体上,加之双金属效应,相对于纯Pt/C催化剂,催化能力提高.浸渍法制得Ni/C前驱体,再将其置于纯乙醇中,用H2PtCl6作为Pt源置换部分Ni,得到Pt修饰的Ni/C催化剂.XRD射线衍射测试结果表明,一般的PtNi合金由于晶格相互影响,只会出现Pt的偏移衍射峰,而该催化剂均出现明显的PtNi两种元素的衍射峰,PtNi晶格互相没有影响.循环伏安法测试结果表明,在Pt-Ni/C系列催化剂中,Pt和Ni含量不同,其电化学活性面积(ECSA)各不相同.在金属总含量一致的前提下,随着Pt含量的增加,催化剂ECSA先增加后减小,最大值为66.90 m2/g,是市售Pt/C(54.12 m2/g)的1.24倍.Tafel测试HOR/HER反应交换电流密度的结果与ECSA结果一致,而Pt-Ni/C催化剂的交换电流密度最高可达485.45 A/g,是市售Pt/C(301.91 A/g)的1.6倍.对性能较好的Pt-Ni/C催化剂进行了表征,X射线光电子能谱结果发现,该催化剂载体上只有少部分Ni的氧化物裸露在表面,大部分为Pt.而透射电镜结果表明,该催化剂纳米级活性金属颗粒尺寸一致,且均匀地分散在载体表面.综合催化剂表征和电化学性能测试结果可知,使用伽伐尼置换法得到的Pt修饰的Ni/C催化剂分散均匀、颗粒尺寸小,且由于Pt作为主要催化活性金属分散于催化剂表面,而Ni作为辅助金属并不直接参与HOR反应,使得该催化剂具有较高的电化学活性.在Pt含量较少时,由于有很多Ni在催化剂表面,且催化层厚度较大,故催化活性一般.随着Pt含量的增加和Ni含量的减少,当催化剂表面只有很少Ni及相关化合物时,由于Pt比表面积大,故活性最高.当Pt含量继续增加时,Pt在Ni表面厚度增加,很多Pt被包裹,故催化活性再次降低.  相似文献   

12.
The exchange current density of the hydrogen oxidation reaction (HOR) on platinum supported on carbon (Pt/C) has been widely studied for liquid base electrolyte (LBE), but has yet to be reported for a polymer solid base electrolyte (SBE). The goal of this study is to determine the exchange current density for the HOR on Pt/C in an SBE using a hydrogen pump and to compare it with those in LBE and a polymer solid acid electrolyte (SAE). We find that the HOR activity in the SBE is almost the same as in LBE, and is nearly two orders of magnitude lower than in SAE. The similar HOR activities on Pt/C in SBE and LBE suggest that previously reported exchange current densities measured in LBE accurately reflect Pt/C's activity for the HOR in SBE fuel cells even though the modes of ion conduction in liquid and solid polymer electrolytes are inherently different.  相似文献   

13.
A new method to electro-deposit platinum nanoparticles on the surface of multi-walled carbon nanotubes (MWNTs) functionalized with 4-mercaptobenzene has been described. X-ray photoelectron spectroscopy results reveal that 4-mercaptobenzene was attached to the surface of MWNTs. Transmission electron microscope and X-ray diffraction analysis confirm that platinum nanoparticles were highly dispersed on the surface of MWNTs, and the average size of the platinum particle is 4.2 nm. The electrocatalytic properties of the Pt/MWNT composite electrode for methanol oxidation were investigated by cyclic voltammetry, and the results show that the fabricated composites exhibit high catalytic activity and good long-term stability. The study provides a feasible approach to fabricate Pt/MWNT composite electrode for direct methanol fuel cell.  相似文献   

14.
The electrocatalytic activity of bimetallic BiPd catalysts supported on Sibunit carbon towards hydrogen oxidation/evolution reactions (HOR/HER) was studied in a gas diffusion electrode (GDE) setup. Catalysts were synthesized by deposition of Pd on the carbon support, followed by impregnation of Pd/C precursor with Bi(NO3)3 solution and reduction in hydrogen. Transmission electron microscopy and local EDX elemental analysis revealed that BiPd/C catalysts contain bimetallic particles with narrow size distribution with maxima at 3.2–4.1 nm. X-ray diffraction evidenced that bimetallic particles are constituted by Pd–Bi solid solution. It was shown that modification of Pd/C by bismuth increases the specific activity of palladium towards HOR/HER by a factor of 3.  相似文献   

15.
The electrocatalytic properties of small platinum nanoparticles were investigated for the oxidation of CO, methanol, and formic acid using voltammetry, chronoamperometry, and surface-enhanced Raman spectroscopy. The particles were generated by galvanostatic deposition of platinum on a polished gold surface from an H2PtCl6 containing electrolyte and ranged between 10 and 20 nm in diameter for low platinum surface concentrations, 10 and 120 nm for medium concentrations, and full Pt monolayers for high concentrations. CO stripping and bulk CO oxidation experiments on the particles up to 120 nm in diameter displayed pronounced structural effects. The CO oxidation current-time transients show a current decay for low platinum coverages and a current maximum for medium and high coverages. These results were also observed in the literature for particles of 2- to 5-nm size and agglomerates of these particles. The similarities between the literature and our results, despite large differences in particle size and morphology, suggest that particle structure and morphology are also very important catalytic parameters. Surface-enhanced Raman spectroscopy data obtained for the oxidation of CO on the Pt-modified Au electrodes corroborate this conclusion. A difference in the ratio between CO adsorbed in linear- and bridge-bonded positions on the Pt nanoparticles of different sizes demonstrates the influence of the surface morphology. The oxidation activity of methanol was found to decrease with the particle size, while the formic acid oxidation rate increases. Again, a structural effect is observed for particles of up to ca. 120 nm in diameter, which is much larger than the particles for which a particle size effect was reported in the literature. The particle shape effect for the methanol oxidation reaction can be explained by a reduction in available “ensemble sites” and a reduction in the mobility of CO formed by decomposition of methanol. As formic acid does not require Pt ensemble sites, decreasing the particle size, and thus, the relative number of defects, increases the reaction rate. Dedicated to Prof. Dr. Teresa Iwasita on the occasion of her 65th birthday in recognition of her numerous contributions to interfacial electrochemistry.  相似文献   

16.
利用线性扫描电沉积的方法在玻碳电极或多壁碳纳米管表面制备出铂纳米立方体, 扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果表明, 铂立方体的尺度约为38 nm, 由Pt(111)择优取向的小粒子围成. 运用电化学循环伏安和电位阶跃技术研究了所合成的2种催化剂和商用碳载铂对乙醇氧化的电催化活性, 发现在2种铂纳米立方体上乙醇氧化的电催化活性和稳定性均高于商用碳载铂, 其起峰电位较商业碳载铂降低168 mV. 采用电化学原位红外光谱对比研究了铂纳米立方体和商用碳载铂对乙醇氧化的电催化过程, 发现铂纳米立方体起始氧化电位提前, 催化活性增强. 乙醇在该催化剂上更易转化为乙酸, 且表现出较强的CO吸附能力.  相似文献   

17.
Electrochemical hydrogen generation is a rising prospect for future renewable energy storage and conversion. Platinum remains a leading choice of catalyst, but because of its high cost and low natural abundance, it is critical to optimize its use. In the present study, platinum oxide nanoparticles of approximately 2 nm in diameter are deposited on carbon nitride (C3N4) nanosheets by thermal refluxing of C3N4 and PtCl2 or PtCl4 in water. These nanoparticles exhibit apparent electrocatalytic activity toward the hydrogen evolution reaction (HER) in acid. Interestingly, the HER activity increases with increasing Pt4+ concentration in the nanoparticles, and the optimized catalyst even outperforms commercial Pt/C, exhibiting an overpotential of only −7.7 mV to reach the current density of 10 mA cm−2 and a Tafel slope of −26.3 mV dec−1. The results from this study suggest that the future design of platinum oxide catalysts should strive to maximize the Pt4+ sites and minimize the formation of the less active Pt2+ species.  相似文献   

18.
Hydroxide‐exchange membrane fuel cells can potentially utilize platinum‐group‐metal (PGM)‐free electrocatalysts, offering cost and scalability advantages over more developed proton‐exchange membrane fuel cells. However, there is a lack of non‐precious electrocatalysts that are active and stable for the hydrogen oxidation reaction (HOR) relevant to hydroxide‐exchange membrane fuel cells. Here we report the discovery and development of Ni3N as an active and robust HOR catalyst in alkaline medium. A supported version of the catalyst, Ni3N/C, exhibits by far the highest mass activity and break‐down potential for a PGM‐free catalyst. The catalyst also exhibits Pt‐like activity for hydrogen evolution reaction (HER) in alkaline medium. Spectroscopy data reveal a downshift of the Ni d band going from Ni to Ni3N and interfacial charge transfer from Ni3N to the carbon support. These properties weaken the binding energy of hydrogen and oxygen species, resulting in remarkable HOR activity and stability.  相似文献   

19.
We demonstrate the use of molecular monolayers to enhance the nucleation of electrocatalytically active platinum nanocrystals onto carbon nanotubes. The multiwalled carbon nanotube (MWNT) is embedded within the polysiloxane shell with large amounts of hydrophilic amino groups outside after the siloxane is polymerized on the nanotube surfaces. Subsequent deposition of platinum nanoparticles led to high densities of 2- to 5-nm diameter Pt nanocrystals uniformly deposited along the length of the carbon nanotubes. The structure and nature of the resulting Pt/Si–MWNT composites were characterized by transmission electron microscopy and X-ray diffraction. Electrochemical measurements show that the molecular monolayers do not impede redox behavior of the electrode, and measurements of the electrocatalytic oxidation of methanol show very high catalytic efficiency.  相似文献   

20.
Pt electrocatalysts supported on multiwalled carbon nanotube (Pt/MWCNT) nanocomposites have been synthesized by a rapid intermittent microwave irradiation (IMI) technique for polymer electrolyte and direct methanol fuel cells (PEFCs and DMFCs), using H(2)PtCl(6) as Pt precursor. The Pt/MWCNT nanocomposites are characterized by XRD, XPS, and TEM. The results indicate that Pt particle size and distribution on the MWCNT support are affected significantly by the oxidation treatment of MWCNTs, the IMI procedure, and the MWCNT tube diameter or surface area. The PtO(x) (x = 1, 2) species was first deposited on the surface of MWCNTs by the IMI and subsequently reduced to Pt(0) with refluxing in the presence of HCOOH. Pt/MWCNT nanocomposites synthesized by this IMI method have achieved extremely uniform dispersed Pt nanoparticles with a particle size of approximately 3 nm. Electrochemical measurement indicates that Pt/MWCNT nanocomposites synthesized by the IMI method display a significantly higher electrochemically active area and higher catalytic activity for the methanol oxidation reaction in comparison to a commercial Pt/C catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号