首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用密度泛函理论(DFT)方法在B3LYP/6-311G**水平研究了锗苯与腈氧化物的1,3偶极环加成反应的微观机理、势能剖面,考察取代基和四氢呋喃溶剂对反应势能剖面的影响.计算结果表明,所研究反应均以协同但非同步的方式进行,且总是Ge—O键先于C—C键形成.锗苯分子中Ge原子上的给电子和吸电子取代基均有利于反应的进行,而腈氧化物C原子上的2,4,6-三甲苯基取代基在热力学上对反应很不利.四氢呋喃溶剂对所研究反应的势能剖面影响不大.  相似文献   

2.
Gas-phase ozone-alkene reactions are known to produce the hydroxyl radical (OH) in high yields. Most mechanistic studies to date have focused on the role of syn carbonyl oxides; however, OH production from ethene ozonolysis indicates a second, poorly understood OH-forming channel, which may contribute to OH production in the ozonolysis of substituted alkenes as well. Using laser-induced fluorescence, we have measured OH and OD yields from the ozonolysis of two partially deuterated alkenes, cis- and trans-3-hexene-3,4-d2. OD is formed from both alkenes, indicating a pathway of hydroxyl-radical formation involving vinylic hydrogens, accounting for one-third of total OH formation from cis-3-hexene. The lack of a significant kinetic isotope effect suggests this pathway is the "hot acid" channel, arising from rearrangement of anti carbonyl oxides. Measured yields also allow for the estimation of syn:anti carbonyl oxide ratios, approximately 50:50 for trans-3-hexene and approximately 20:80 for cis-3-hexene, qualitatively consistent with our understanding of ozonide decomposition pathways.  相似文献   

3.
The MCSCF calculations indicate that both triplet and singlet state of biradical di-para-xylylene can exist during polymerization of parylene in gas phase and both can potentially react with vinyl molecules. The singlet-state open-shell dimer turned out to exhibit multiconfigurational character. In the case of triplet state of the dimer two mechanisms of the reactions with various species containing vinyl groups have been examined at the B3LYP/6-31G level. The kinetic and thermodynamical barriers have been estimated for the reaction path involving the π-bond cleavage as well as for the route describing the hydrogen atom transfer. It was found that the overall reactions are thermodynamically favorable, whereas appropriate kinetic barriers for certain derivatives are very small (close to 0 kcal/mol) which in turn makes allowances for easy reactivity under accessible conditions. The calculated mechanisms indicate the influence of substituents in vinyl groups for reactivity of parylene during LPCVD process.  相似文献   

4.
The conversion of photon energy to chemical energy and vice versa requires the close arrangement of absorber/emitters and (electro)chemical reactions sites. This review considers local measurement techniques aiding in the design of efficient oxide systems for the utilization of light as energy source and as efficient detection principle. Artificial photoelectrochemical systems are often build on oxides as they are abundant and have semiconducting properties. However, no single oxide fulfills all requirements for an efficient conversion of sunlight to chemical energy and thus complex oxides are explored. These oxides might be obtained by doping oxides with other metal cations or by combining different oxides for absorbance and catalyzing the desired reaction, mainly water splitting. Due to the enormous amount of possible combinations combinatorial search for new material systems has been pursued and accelerated around the world making use of local photoelectrochemical characterization techniques in the screening step. Local detection schemes based on scanning electrochemical microscopy and scanning electrochemical cell microscopy also provide details about the kinetics for heterogeneous charge transfer and the release of soluble reaction products. During the recent years the scanning probe methods have been complemented by local detection of fluorescent reaction products that are formed by heterogeneous electron transfer reactions from and non-fluorescent precursor molecules. Such detection is possible with single molecule sensitivity and spatial resolution exceeding the diffraction limit (superresolution). Such approaches enabled the discovery of population within ensembles of metal oxide nanoparticles that are distinguished by the location and reactivity of their reaction sites. Optical techniques for measuring Faradaic currents hold great promise for the measurement of very low currents beyond the study of photoelectrochemistry of metal oxides.  相似文献   

5.
The reactivity of carbonyl oxides toward benzaldehyde was characterized by thek 33/k 33 ratio, wherek 33 andk 31 are the rate constants of the reactions of RCOO with PhCHO and diphenyldiazomethane Ph2CN2, respectively. Thek 33/k 31 ratios obtained at 60°C in acetonitrile range from 0.61·10−2 (m-BrPh2CN2) to 20·10−2 (Ph2MeCHO). The reactions are probably preceded by the formation of a charge-transfer complex (CTC) with charge transfer from aldehyde to RCOO. The carbonyl oxide reacts with aldehydes by both the nucleophilic pathway (at the C atom of the—CHO group to form 1,2,4-trioxolane) and electrophilic pathway (by the attack at the aromatic ring with the intermediate formation of CTC). In the latter case, either 1,2,4-trioxolane or oxidation products of the phenyl ring are formed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 650–654, April, 2000.  相似文献   

6.
A systematic theoretical study at the M06L/6-311+G(d, p) level of theory was carried out to calculate the activation barriers ΔH for the intramolecular ortho-cyclization of aromatic nitroso oxides 2-R-C6H4NOO and to reveal the effect of substituent nature and position in the benzene ring on the nitroso oxides reactivity. A set of 24 substituents with widely differing spatial and electronic properties (inductive, resonant, steric effects of R) was studied. The para-substituent was shown to have little effect on the ΔH value. The full set of effects of the R substituent contributes to the reactivity of ArNOO for 3-substituted aromatic nitroso oxides. In the case of 5-substituted ArNOO the Hammett-type relationship was obtain to describe inductive and resonant effects of R on the ortho-cyclization reactivity. The ortho-cyclization for 2-substituted nitroso oxides is a nontrivial example of the existence of an “inverted” steric effect, when an increase in substituent size accelerates intramolecular transformation. The substituent in position 6 also exhibits an “inverted” steric effect, but it is noticeably weaker than that for 2-R-C6H4NOO.  相似文献   

7.
The hydrogen atom transfer reaction between substituted methanes (substituents; H, F, CH3, OH, and CN) and methyl radicals was studied by 4-31G (UHF) calculations using the MINDO/3 geometries. The transition state structures and energy barriers were determined, and variations of the transition state and of the reactivity due to the change of substituent were analyzed based on the potential energy surface characteristics. It was concluded that the reaction is of the SH2 type with a backside attack, and transition state variations are controlled by the vector sum of the component parallel to (Hammond rule) and one perpendicular to the reaction coordinate (anti-Hammond rule). It was also concluded that the most important factor influencing the reactivity is bond dissociation energy effect directly related to the spin transfer of the radical species, and the polar effect need not be overemphasized.  相似文献   

8.
Antony Chrétien 《Tetrahedron》2005,61(33):7907-7915
Activation by Lewis acid catalysis and high pressure allows pyrrole derivatives to react with electron-rich dienes in normal electron demand [4+2] cycloadditions, provided that the aromatic ring is substituted by at least two electron-withdrawing groups. The dienophilic behavior of the heterocycle is expressed through the involvement of either the aromatic carbon-carbon double bond in an all-carbon process or the carbonyl moiety of the substituent in a heterocycloaddition reaction. In this regard, the nature of the heterocyclic substituents is shown to have a dramatic influence and to direct both the reactivity and the chemoselectivity of the cycloaddition.  相似文献   

9.
曹阳  王友良 《化学学报》1991,49(1):10-14
本文采用6-31G基组的abinitio方法对羰基氧化物RR^1COO(R,R^1=H,F,CH~3)进行几何构型优化计算,研究其基态的电子结构。结果表明,RR^1COO的稳定结构为双自由基型,其单重态和双重态的相对稳定性受取代基的影响。H~2COO、H(CH~3)COO和(CH~3)~2COO的基态为单重态(^1A),HFCOO和F~2COO的基态为三重态(^3A),HFCOO和H(CH~3)COO的顺式结构比反式稳定。  相似文献   

10.
The mechanistic aspects of the photosensitized reactions of a series of benzaldehyde oximes (1a-o) were studied by steady-state (product studies) and laser flash photolysis methods. Nanosecond laser flash photolysis studies have shown that the reaction of the oxime with triplet chloranil (3CA) proceeds via an electron-transfer mechanism provided the free energy for electron transfer (DeltaG(ET)) is favorable; typically, the oxidation potential of the oxime should be below 2.0 V. Substituted benzaldehyde oximes with oxidation potentials greater than 2.0 V quench 3CA at rates that are independent of the substituent and the oxidation potential. The most likely mechanism under these conditions is a hydrogen atom transfer mechanism as this reaction should be dependent on the O-H bond strength only, which is virtually the same for all oximes. Product studies have shown that aldoximes react to give both the corresponding aldehyde and the nitrile. The important intermediate in the aldehyde pathway is the iminoxyl radical, which is formed via an electron transfer-proton transfer (ET-PT) sequence (for oximes with low oxidation potentials) or via a hydrogen atom transfer (HAT) pathway (for oximes with larger oxidation potentials). The nitriles are proposed to result from intermediate iminoyl radicals, which can be formed via direct hydrogen atom abstraction or via an electron-transfer-proton-transfer sequence. The experimental data seems to support the direct hydrogen atom abstraction as evidenced by the break in linearity in the plot of the quenching rates against the oxidation potential, which suggests a change in mechanism. The nitrile product is favored when electron-accepting substituents are present on the benzene ring of the benzaldehyde oximes or when the hydroxyl hydrogen atom is unavailable for abstraction. The latter is the case in pyridine-2-carboxaldoxime (2), where a strong intramolecular hydrogen bond is formed. Other molecules that form weaker intramolecular hydrogen bonds such as 2-furaldehyde oxime (3) and thiophene-2-carboxaldoxime (4) tend to yield increasing amounts of aldehyde.  相似文献   

11.
The mechanisms of seven reactions between keteniminium cations and olefins have been theoretically explored at BHandHLYP/6-31G level. It is found that these seven reactions always form a relatively stable hydrogen-bonded type of ion-molecule complex first except for reactions 1d+2a and 1e+2a, which have no hydrogen atom attached to nitrogen atom in keteniminium cations. Some reactions take place via a concerted but unsynchronous mechanism, and the others are stepwise processes. The substituent effects are also studied. The data reveal that the electron-pushing substituents on keteniminium cations disfavor the reaction, and the electron-attracting substituents on keteniminium cations favor the reactions. The substituent effects on ethene are contrary to the former case.  相似文献   

12.
Variously substituted linear enediynes phosphines oxides possessing the double bond at either the terminal or internal position and with the phosphine oxide appended onto the alkyne or the alkene terminus have been prepared. Their cobalt(I)-mediated cyclizations produce the eta(4)-complexed tricyclic compounds in high yields. The endo/exo selectivity depends on both the position of the phosphine oxide on the enediyne and the position of the double bond in the tether. With chiral phosphine oxides, a certain degree of induction was observed, and depending on the substituents on the phosphorus atom, the diastereoselectivity can reach 74%. Up to now, it is the highest level reported for such a cyclization in which a stereogenic center is created. Regarding all of our results, two reaction pathways involving an initial coordination of the cobalt moiety on the chelating site of the substituent have been suggested to explain the observed selectivities.  相似文献   

13.
The decay kinetics of a series of carbonyl oxides (CbO)—4-methylbenzophenone oxide, 2,5-dimethylbenzophenone oxide, 4-chlorobenzophenone oxide, 2-bromobenzophenone oxide, and acetophenone oxide—were studied by the pulse photolysis technique in acetonitrile, benzene,n-decane, andn-pentane. The absorption spectra were studied, and the absorption coefficients and absolute rate constants of CbO decay were determined. The absorption maxima observed in the spectra of carbonyl oxides range within 405±25 nm. The decay rate constant was found to depend on both the CbO structure and the medium. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 677–681, April, 1999.  相似文献   

14.
The kinetics of the reactions of phenylnitroso oxide and 4-CH3O- and 4-Cl-phenylnitroso oxides with a series of substituted styrenes (4-X-C6H4-CH=CH2; X = H, CH3O, Cl, CN) in acetonitrile at 22 ± 2°C was studied using the flash photolysis technique. It was shown for 4-CH3O-C6H4NOO as an example that only the trans isomers of the nitroso oxides are involved in the reaction. There is a linear correlation between the logarithm of the rate constant and the electronic properties of the substituent in the nitroso oxide aromatic ring on the Hammett scale: ρ = 2.3 ± 0.3 (r = 0.993) for 4-CH3O-styrene ρ = 2.03 ± 0.07 (r = 0.995) for styrene, and ρ = 1.77 ± 0.05 (r = 0.9996) for 4-Cl-styrene. Both the electron-donating and electron-withdrawing substituents in the aromatic ring of styrene increase its reactivity toward a given nitroso oxide. An analysis of the products of phenyl azide photooxidation in the presence of styrene showed that the product of phenylnitroso oxide [3+2]cycloaddition to the double bond of the olefin decomposes into benzalaniline and carbonyl oxide.  相似文献   

15.
We have studied the oxidation of SO(2) to SO(3) by four peroxyradicals and two carbonyl oxides (Criegee intermediates) using both density functional theory, B3LYP, and explicitly correlated coupled cluster theory, CCSD(T)-F12. All the studied peroxyradicals react very slowly with SO(2) due to energy barriers (activation energies) of around 10 kcal/mol or more. We find that water molecules are not able to catalyze these reactions. The reaction of stabilized Criegee intermediates with SO(2) is predicted to be fast, as the transition states for these oxidation reactions are below the free reactants in energy. The atmospheric relevance of these reactions depends on the lifetimes of the Criegee intermediates, which, at present, is highly uncertain.  相似文献   

16.
Density functional theory at the B3LYP/6-31+G(d,p) level and ab initio calculations at the CBS-QB3 level have been used to analyze 1,3 dipolar cycloaddition reactions of dinitraminic acid (HDN) and its proton transfer isomer (HO(O)NNNO2). It is shown that the nitro group of HDN and the -N-N=O functionality of the isomer react readily with carbon-carbon double bonds. Cycloadditions of HDN are compared with the corresponding reactions with azides and nitrile oxides as 1,3 dipoles. It is shown that the reactivities of HDN and its proton transfer isomer decrease with increasing electron withdrawing power of the substituents adjacent to the carbon-carbon double bond. In contrast, for azides and nitrile oxides, the highest reactivity is obtained with dipolarophiles with strongly electron withdrawing substituents. The observed reactivity trends allow for the design of unsaturated compounds that are highly reactive toward azides and chemically inert toward dinitramides. This may be of relevance for the development of binder materials for ammonium dinitramide based propellants.  相似文献   

17.
Quantum mechanical calculations have been performed on the migration step of the Baeyer-Villiger (BV) rearrangements of some acetophenones, p-RC6H4COCH3 (R = CN, Cl, H, CH3, CH3O) with m-chloroperbenzoic acid. The energy barriers, charge distributions, and frontier molecular orbitals determined for the aryl migration step explain the effects of substituents on the reactivity of these ketones. A plot of the log of relative oxidation rates of the ketones versus their corresponding calculated energy barriers of the migration stage showed a downward deviation for the p-OCH3 derivative. This result is consistent with a change in the rate-determining step, from the aryl migration to the carbonyl addition, in the case of p-methoxyacetophenone, according to the suggestion that the rate-determining step of the BV oxidation can change with variations in the substituent group.  相似文献   

18.
Abstract

A series of α-hydroxyphosphine oxides were prepared by the reactions of diphenylphosphine oxide and aromatic carbonyl compounds and characterized by 1H NMR, 13C NMR, 31P NMR, FT-IR, ESI-MS, and HR-MS spectra. The reaction rates and experimental conditions of aromatic aldehydes and aromatic ketones were obviously different due to the activity of their carbonyls. The different substituents of the aromatic aldehydes affected the reaction rate too, and the quantitative reactivity of their substituent conformed to the Hammett equation. The results were confirmed by 31P NMR spectroscopy.  相似文献   

19.
Intramolecular Diels-Alder reactions of various N-allyl 2-furoyl amides with different substituents on the nitrogen atom were investigated. The reaction of amides having bulky substituents proceeded at a faster rate than the analogs whose substituents were of less bulkiness. From the systematic experimental survey of the substituent effects and the energetic evaluation based on the DFT calculations at the B3LYP/6-31G(d) level, the enhanced reactivity was ascribed to the relief of steric strain upon cyclization rather than the amide rotational isomerism governed by the bulky substituents.  相似文献   

20.
(13)C NMR chemical shifts and nu(C[double bond]O) frequencies have been measured for several series of phenyl- or acyl-substituted phenyl acetates and for acyl-substituted methyl acetates to investigate the substituent-induced changes in the electrophilic character of the carbonyl carbon. Charge density, bond order, and energy calculations have also been performed. The spectroscopic and charge density results indicate that opposite to the conventional thinking, electron-withdrawing substituents do not increase the electrophilicity of the carbonyl carbon but instead decrease it. On the other hand, reaction energies of the isodesmic reactions designed show that electron-withdrawing substituents destabilize the carbonyl derivatives investigated. So, a significant ground-state destabilization of carboxylic acid esters, and carbonyl compounds in general, due to the decreased resonance stabilization, is proposed as a novel concept to explain both the increase in their reactivity and the changes in the chemical shifts and carbonyl frequencies induced by electron-withdrawing substituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号