首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study we evaluated trends in the bond distances and dissociation enthalpies of actinide oxides AnO and AnO(2) (An = Th-Lr) on the basis of consistent computed data obtained by using density functional theory in conjunction with relativistic small-core pseudopotentials. Computations were carried out on AnO (An = Th-Lr) and AnO(2) (An = Np, Pu, Bk-Lr) species, while for the remaining AnO(2) species recent literature data (Theor. Chem. Acc. 2011, 129, 657) were utilized. The most important computed properties include the geometries, vibrational frequencies, dissociation enthalpies, and several excited electronic states. These molecular properties of the late actinide oxides (An = Bk-No) are reported here for the first time. We present detailed analyses of the bond distances, covalent bonding properties, and dissociation enthalpies.  相似文献   

2.
The following monopositive actinyl ions were produced by electrospray ionization of aqueous solutions of An(VI)O(2)(ClO(4))(2) (An = U, Np, Pu): U(V)O(2)(+), Np(V)O(2)(+), Pu(V)O(2)(+), U(VI)O(2)(OH)(+), and Pu(VI)O(2)(OH)(+); abundances of the actinyl ions reflect the relative stabilities of the An(VI) and An(V) oxidation states. Gas-phase reactions with water in an ion trap revealed that water addition terminates at AnO(2)(+)·(H(2)O)(4) (An = U, Np, Pu) and AnO(2)(OH)(+)·(H(2)O)(3) (An = U, Pu), each with four equatorial ligands. These terminal hydrates evidently correspond to the maximum inner-sphere water coordination in the gas phase, as substantiated by density functional theory (DFT) computations of the hydrate structures and energetics. Measured hydration rates for the AnO(2)(OH)(+) were substantially faster than for the AnO(2)(+), reflecting additional vibrational degrees of freedom in the hydroxide ions for stabilization of hot adducts. Dioxygen addition resulted in UO(2)(+)(O(2))(H(2)O)(n) (n = 2, 3), whereas O(2) addition was not observed for NpO(2)(+) or PuO(2)(+) hydrates. DFT suggests that two-electron three-centered bonds form between UO(2)(+) and O(2), but not between NpO(2)(+) and O(2). As formation of the UO(2)(+)-O(2) bonds formally corresponds to the oxidation of U(V) to U(VI), the absence of this bonding with NpO(2)(+) can be considered a manifestation of the lower relative stability of Np(VI).  相似文献   

3.
U(VI), Np(VI), and Pu(VI) borates with the formula AnO(2)[B(8)O(11)(OH)(4)] (An = U, Np, Pu) have been prepared via the reactions of U(VI) nitrate, Np(VI) perchlorate, or Pu(IV) or Pu(VI) nitrate with molten boric acid. These compounds are all isotypic and consist of a linear actinyl(VI) cation, AnO(2)(2+), surrounded by BO(3) triangles and BO(4) tetrahedra to create an AnO(8) hexagonal bipyramidal environment. The actinyl bond lengths are consistent with actinide contraction across this series. The borate anions bridge between actinyl units to create sheets. Additional BO(3) triangles and BO(4) tetrahedra extend from the polyborate layers and connect these sheets together to form a three-dimensional chiral framework structure. UV-vis-NIR absorption and fluorescence spectroscopy confirms the hexavalent oxidation state in all three compounds. Bond-valence parameters are developed for Np(VI).  相似文献   

4.
Reactions of atomic and ligated dipositive actinide ions, An2+, AnO2+, AnOH2+, and AnO2(2+) (An = Th, U, Np, Pu, Am) were systematically studied by Fourier transform ion cyclotron resonance mass spectrometry. Kinetics were measured for reactions with the oxidants, N2O, C2H4O (ethylene oxide), H2O, O2, CO2, NO, and CH2O. Each of the five An2+ ions reacted with one or more of these oxidants to produce AnO2+, and reacted with H2O to produce AnOH2+. The measured pseudo-first-order reaction rate constants, k, revealed disparate reaction efficiencies, k/k(COL): Th2+ was generally the most reactive and Am2+ the least. Whereas each oxidant reacted with Th2+ to give ThO2+, only C2H4O oxidized Am2+ to AmO2+. The other An2+ exhibited intermediate reactivities. Based on the oxidation reactions, bond energies and formation enthalpies were derived for the AnO2+, as were second ionization energies for the monoxides, IE[AnO+]. The bare dipositive actinyl ions, UO2(2+), NpO2(2+), and PuO2(2+), were produced from the oxidation of the corresponding AnO2+ by N2O, and by O2 in the cases of UO2+ and NpO2+. Thermodynamic properties were derived for these three actinyls, including enthalpies of formation and electron affinities. It is concluded that bare UO2(2+), NpO2(2+), and PuO2(2+) are thermodynamically stable toward Coulomb dissociation to [AnO+ + O+] or [An+ + O2+]. It is predicted that bare AmO2(2+) is thermodynamically stable. In accord with the expected instability of Th(VI), ThO(2+) was not oxidized to ThO2(2+) by any of the seven oxidants. The gas-phase results are compared with the aqueous thermochemistry. Hydration enthalpies were derived here for uranyl and plutonyl; our deltaH(hyd)[UO2(2+)] is substantially more negative than the previously reported value, but is essentially the same as our deltaH(hyd)[PuO2(2+)].  相似文献   

5.
Fourier transform ion cyclotron resonance mass spectrometry was employed to study the products and kinetics of gas-phase reactions of Cm (+) and Cm (2+); parallel studies were carried out with La (+/2+), Gd (+/2+) and Lu (+/2+). Reactions with oxygen-donor molecules provided estimates for the bond dissociation energies, D[M (+)-O] (M = Cm, Gd, Lu). The first ionization energy, IE[CmO], was obtained from the reactivity of CmO (+) with dienes, and the second ionization energies, IE[MO (+)] (M = Cm, La, Gd, Lu), from the rates of electron-transfer reactions from neutrals to the MO (2+) ions. The following thermodynamic quantities for curium oxide molecules were obtained: IE[CmO] = 6.4 +/- 0.2 eV; IE[CmO (+)] = 15.8 +/- 0.4 eV; D[Cm-O] = 710 +/- 45 kJ mol (-1); D[Cm (+)-O] = 670 +/- 40 kJ mol (-1); and D[Cm (2+)-O] = 342 +/- 55 kJ mol (-1). Estimates for the M (2+)-O bond energies for M = Cm, La, Gd, and Lu are all intermediate between D[N 2-O] and D[OC-O] - that is, 167 kJ mol (-1) < D[M (2+)-O] < 532 kJ mol (-1) - such that the four MO (2+) ions fulfill the thermodynamic requirement for catalytic oxygen-atom transport from N2O to CO. It was demonstrated that the kinetics are also favorable and that the CmO (2+), LaO (2+), GdO (2+), and LuO (2+) dipositive ions each catalyze the gas-phase oxidation of CO to CO2 by N2O. The CmO 2 (+) ion appeared during the reaction of Cm (+) with O 2 when the intermediate, CmO (+), was not collisionally cooled - although its formation is kinetically and/or thermodynamically unfavorable, CmO 2 (+) is a stable species.  相似文献   

6.
Small alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) were used to probe the gas-phase reactivity of doubly charged actinide cations, An(2+) (An = Th, Pa, U, Np, Pu, Am, Cm), by means of Fourier transform ion cyclotron resonance mass spectrometry. Different combinations of doubly and singly charged ions were observed as reaction products, comprising species formed via metal-ion induced eliminations of small molecules, simple adducts and ions resulting from electron, hydride or methide transfer channels. Th(2+), Pa(2+), U(2+) and Np(2+) preferentially yielded doubly charged products of hydrocarbon activation, while Pu(2+), Am(2+) and Cm(2+) reacted mainly through transfer channels. Cm(2+) was also capable of forming doubly charged products with some of the hydrocarbons whereas Pu(2+) and Am(2+) were not, these latter two ions conversely being the only for which adduct formation was observed. The product distributions and the reaction efficiencies are discussed in relation to the electronic configurations of the metal ions, the energetics of the reactions and similar studies previously performed with doubly charged lanthanide and transition metal cations. The conditions for hydrocarbon activation to occur as related to the accessibility of electronic configurations with one or two 5f and/or 6d unpaired electrons are examined and the possible chemical activity of the 5f electrons in these early actinide ions, particularly Pa(2+), is considered.  相似文献   

7.
The title compounds, [AnO2(18-crown-6)]n+, An = U, Np, and Pu and n = 1 and 2, as well as the related (experimentally observed) complex [UO2(dicyclohexyl-18-crown-6)]2+ are studied using relativistic density functional theory (DFT). Different relativistic methods (large-core and small-core effective core potentials, all-electron scalar four-component) and two flavors of approximate DFT (B3LYP and PBE) are used. Calculated bond lengths agree well with the available experimental data for the NpV complex, while larger differences for the UVI complexes appear to be related to the large uncertainties in the experimental data. The axial AnO bonds are found to be weaker and longer than in the corresponding penta-aquo complexes, though still of partial triple-bond character. The AnO bond lengths and strengths decrease along the actinide series, consistent with the actinide contraction. Gas-phase binding energies calculated for the penta-aquo complexes and crown-ether complexes of the actinides studied, as well as ligand-exchange energies, show that there is no intrinsic preference, or "better fit", for actinyl(V) cations as compared to actinyl(VI) ones. Rather, the ability of NpO2+ (NpV) to form in-cavity 18-crown-6 complexes in water, which is impossible for UO22+, is traced to solvation effects in polar solvents. Thus, the experimentally observed stabilization of the pentavalent oxidation state as compared to the hexavalent one is due to the effective screening of the charge provided by the macrocycle, and this leads to destabilization of the AnVI crown complexes relative to their AnV counterparts.  相似文献   

8.
The vibrational frequencies of the actinide oxides AnO and AnO(2) (An = Th, Pa, U, Np, Pu, Am, Cm) and of their mono- and dications have been calculated using advanced quantum chemical techniques. The stretching fundamental frequencies of the monoxides have been determined by fitting the potential function to single-point energies obtained by relativistic CASPT2 calculations along the stretching coordinate and on this basis solving numerically the ro-vibrational Schro?dinger equation. To obtain reliable fundamental frequencies of the dioxides, we developed an empirical approach. In this approach the harmonic vibrational frequencies of the AnO(2)(0/+/2+) species were calculated using eight different exchange-correlation DFT functionals. On the basis of the good correlation found between the vibrational frequencies and computed bond distances, the final frequency values were derived for the CASPT2 reference bond distances from linear regression equations fitted to the DFT data of each species. As a test, the approach provided excellent agreement with accurate experimental data of ThO, ThO(+), UO, and UO(+). The joint analysis of literature experimental and our computed data facilitated the prediction of reliable gas-phase molecular properties for some oxides. They include the stretching frequencies of PuO, ThO(2), UO(2), and UO(2)(+) and the bond distance of PuO (1.818 ?, being likely within 0.002 ? of the real value). Also the derived equilibrium bond distances of ThO(2), UO(2), and UO(2)(+) (1.896, 1.790, and 1.758 ?, respectively) should approximate closely the (yet unknown) experimental values. On the basis of the present results, we suggest that the ground electronic state of PuO(2) in Ar and Kr matrices is probably different from that in the gaseous phase, similarly to UO(2) observed previously.  相似文献   

9.
Gibson JK  Haire RG 《Inorganic chemistry》2002,41(22):5897-5906
Gas-phase chemistry of bare and oxo-ligated protactinium ions has been studied for the first time. Comparisons were made with thorium, uranium, and neptunium ion chemistry to further the systematic understanding of 5f elements. The rates of oxidation of Pa(+) and PaO(+) by ethylene oxide compared with those of the homologous uranium ions indicate that the first and second bond dissociation energies, BDE[Pa(+)-O] and BDE[OPa(+)-O], are approximately 800 kJ mol(-1). The relatively facile fluorination of Pa(+) to PaF(4)(+) by SF(6) is consistent with the high stability of the pentavalent oxidation state of Pa. Reactions with ethene, propene, 1-butene, and iso-butene revealed that Pa(+) is a very reactive metal ion. In analogy with U(+) chemistry, ethene was trimerized by Pa(+) to give PaC(6)H(6)(+). Reactions of Pa(+) with larger alkenes resulted in secondary and tertiary products not observed for U(+) or Np(+). The bare protactinium ion is significantly more reactive with organic substrates than are heavier actinide ions. The greatest difference between Pa and heavier actinide congeners was the exceptional dehydrogenation activity of PaO(+) with alkenes; UO(+) and NpO(+) were comparatively inert. The striking reactivity of PaO(+) is attributed to the distinctive electronic structure at the metal center in this oxide, which is considered to reflect the greater availability of the 5f electrons for participation in bonding, either directly or by promotion/hybridization with higher-energy valence orbitals.  相似文献   

10.
Environmental contamination by artificial radionuclides and the evaluation of their sources require precise isotopic analysis and accurate determination of actinide elements above all plutonium and americium. These can be achieved by alpha spectrometry or by inductively coupled plasma mass spectrometry (ICP-MS) after chemical separation. In the present work, a simple, rapid method has been developed for the sequential separation of actinide elements from aqueous solutions and their determination by alpha spectrometry. Extraction chromatography was applied to the separation of 241Am, 244Cm, 239 + 240,238Pu, 237Np and 238,235,234U using microporous polyethylene supporting tri-n-octylamine as the stationary phase and hydrochloric acid with and without reducing agents as the mobile phase. Actinide in 9 M HCl solution is introduced into the anion exchange column; Pu (IV), Np (IV) and U(VI) are retained on the column while Am (III) and Cm passed through. Pu is eluted first, reductively, after which, Np and then U are eluted. The method can be applied to all aqueous solutions which do not contain strong complexing or precipitation agents for the elements considered.  相似文献   

11.
Naked and oxo-ligated actinide (An) monopositive ions were reacted with ethylene oxide, cyclo-C(2)H(4)O (EtO). Along with An = U, Np, Pu and Am, ions of two lanthanide (Ln) elements, Ln = Tb and Tm, were studied for comparison. Metal and metal oxide ions, M(+), MO(+) and MO(2)(+), were generated by laser ablation and immediately reacted with EtO. Unreacted and product ions were detected by time-of-flight mass spectrometry. It was apparent that the overall reaction cross-sections decreased in the order U(+) > or = Np(+) > Pu(+) > Am(+). A primary reaction channel for each studied metal was the formation of MO(+) from M(+), in accord with the expected exothermicity of oxygen abstraction from EtO. For U, Np and Pu, the dioxides were also major products, indicating OAn(+)--O dissociation energies of at least 350 kJ mol(-1), the energy required for O-atom abstraction from EtO. For Am, Tb and Tm, the dioxides were only very minor products, reflecting the stabilities of the trivalent states and resistance to oxidation to higher valence states; the structures/bonding in these MO(2)(+) are intriguing given that the formal pentavalent bonding state is effectively unattainable. It was demonstrated that EtO, unlike more thermochemically favorable but kinetically restricted O-donors, is effective at achieving facile oxidation of actinide metal ions to the monoxide, and to the dioxide if the second O-abstraction reaction is exothermic. Several intriguing minor products were also identified, most of which incorporate metal--oxygen bonding and are attributed to the oxophilicity of the f-block elements; the contrast to the behavior of first-row d-block transition elements is striking in this regard. Particularly noteworthy was the formation of MH(4)(+) (and MOH(4)(+)), evidently via abstraction of all four H atoms from a single C(2)H(4)O molecule; the structures/bonding in these novel 'hydride' species are indeterminate and warrant further attention.  相似文献   

12.
The laser ablation with prompt reaction and detection method was employed to provide a survey of some gas-phase reactions of actinide (M = U, Np, Pu and Am) and lanthanide (M = Tb and Tm) ions, M(+) and MO(1,2)(+), with alcohols, thiols and ethers. Particular attention was given the changing behavior in progressing across the actinide series beyond uranium. With alcohols, ROH, major products included hydroxides and alkoxides, M(OH)(1,2)(+), M(OR)(1,2)(+), MO(OH)(+) and MO(OR)(+); these products are presumed to have resulted from RO&bond;H and R&bond;OH bond cleavage by ablated M(+) and MO(+). The abundance distributions for these elementary products reflected the decrease in stabilities of high oxidation states between U and Am. Other alcohol reaction products included electrostatically bonded adducts, such as HO&bond;Np(+)ellipsisC(3)H(7)OH, sigma-bonded organometallics, such as HO&bond;Pu(+)&bond;C(2)H(5), and pi-bonded organometallics, such as Np(+)&bond;eta(3)-?C(3)H(5)?. In view of the inability of actinide and lanthanide ions to dehydrogenate alkanes, the exhibition of dehydrogenation of the alkyl chain of alcohols, as in HO-Pu(+)-C(3)H(5)O from propanol, suggests a non-insertion mechanism involving complexation of the reactant ion to the alcohol. Whereas O abstraction products from ROH were obfuscated by directly ablated MO(1,2)(+), S abstraction from thiols, RSH, was manifested by the appearance of MS(+), MS(2)(+) and MOS(+). In analogy with OH abstraction from alcohols to produce metal hydroxides, SH abstraction from thiols resulted in hydrosulfides, including Am(SH)(+) and Np(SH)(2)(+). In addition to several other reaction pathways with the thiol reagents, products presumed to be thiolates included Am(C(3)H(7)S)(+) and NpO(C(3)H(7)S) from propanethiol. A primary product of reaction with dimethyl ether were methoxides resulting from C--O bond cleavage, including Am(OCH(3))(+) and Np(OCH(3))(2)(+). With methyl vinyl ether, more complex pathways were exhibited, most of which corresponded to the elimination of stable organic molecules. An ancillary result was the discovery of several small oxide clusters, Am(2)O(n)(+), Np(2)O(n)(+) and AmNpO(n)(+). The compositions and abundance distributions of these clusters reflected the propensity of Np to exist in higher oxidation states than Am; the dominant binary clusters were Am(2)O(2)(+) and Np(2)O(3)(+).  相似文献   

13.
Cao X  Heidelberg D  Ciupka J  Dolg M 《Inorganic chemistry》2010,49(22):10307-10315
The experimentally observed extraction complexes of trivalent lanthanide Eu(III) and actinide Am(III)/Cm(III) cations with purified Cyanex301 [bis(2,4,4-trimethylpentyl)dithiophosphinic acid, HBTMPDTP denoted as HL], i.e., ML(3) (M = Eu, Am, Cm) as well as the postulated complexes HAmL(4) and HEuL(4)(H(2)O) have been studied by using energy-consistent 4f- and 5f-in-core pseudopotentials for trivalent f elements, combined with density functional theory and second-order M?ller-Plesset perturbation theory. Special attention was paid to explaining the high selectivity of Cyanex301 for Am(III)/Cm(III) over Eu(III). It is shown that the neutral complexes ML(3), where L acts as a bidentate ligand and the metal cation is coordinated by six S atoms, are most likely the most stable extraction complexes. The calculated metal-sulfur bond distances for ML(3) do reflect the cation employed; i.e., the larger the cation, the longer the metal-sulfur bond distances. The calculated M-S and M-P bond lengths agree very well with the available experimental data. The obtained changes of the Gibbs free energies in the extraction reactions M(3+) + 3HL → ML(3) + 3H(+) agree with the thermodynamical priority for Am(3+) and Cm(3+). Moreover, the ionic metal-ligand dissociation energies of the extraction complexes ML(3) show that, although EuL(3) is the most stable complex in the gas phase, it is the least stable in aqueous solution.  相似文献   

14.
Photoionization efficiency curves were measured for gas-phase PtC, PtO, and PtO2 using tunable vacuum ultraviolet (VUV) radiation at the Advanced Light Source. The molecules were prepared by laser ablation of a platinum tube, followed by reaction with CH4 or N2O and supersonic expansion. These measurements provide the first directly measured ionization energy for PtC, IE(PtC) = 9.45 +/- 0.05 eV. The direct measurement also gives greatly improved ionization energies for the platinum oxides, IE(PtO) = 10.0 +/- 0.1 eV and IE(PtO2) = 11.35 +/- 0.05 eV. The ionization energy connects the dissociation energies of the neutral and cation, leading to greatly improved 0 K bond dissociation energies for the neutrals: D0(Pt-C) = 5.95 +/- 0.07 eV, D0(Pt-O) = 4.30 +/- 0.12 eV, and D0(OPt-O) = 4.41 +/- 0.13 eV, as well as enthalpies of formation for the gas-phase molecules DeltaH(0)(f,0)(PtC(g)) = 701 +/- 7 kJ/mol, DeltaH(0)(f,0)(PtO(g)) = 396 +/- 12 kJ/mol, and DeltaH(0)(f,0)(PtO2(g)) = 218 +/- 11 kJ/mol. Much of the error in previous Knudsen cell measurements of platinum oxide bond dissociation energies is due to the use of thermodynamic second law extrapolations. Third law values calculated using statistical mechanical thermodynamic functions are in much better agreement with values obtained from ionization energies and ion energetics. These experiments demonstrate that laser ablation production with direct VUV ionization measurements is a versatile tool to measure ionization energies and bond dissociation energies for catalytically interesting species such as metal oxides and carbides.  相似文献   

15.
16.
The fate of actinyl species in the environment is closely linked to oxidation state, since the reduction of An(VI) to An(IV) greatly decreases their mobility due to the precipitation of the relatively insoluble An(IV) species. Here we study the mechanism of the reduction of [AnO(2)](2+) (An = U, Np, Pu) both in aqueous solution and by Fe(II) containing proteins and mineral surfaces, using density functional theory calculations. We find a disproportionation mechanism involving a An(V)-An(V) cation-cation complex, and we have investigated how these complexes are formed in the different environments. We find that the behaviour of U and Pu complexes are similar, but the reduction of Np(V) to Np(IV) would seems to be more difficult, in line with the experimental finding that Np(V) is generally more stable than U(V) or Pu(V). Although the models we have used are somewhat idealised, our calculations suggest that there are strong similarities between the biotic and abiotic reduction pathways.  相似文献   

17.
The fundamental research on actinide materials has been carried out in order to contribute to the development of future nuclear fuel cycle and actinide science database. Among actinide materials, the R&D has been focused on Pu and minor actinide (MA; Np, Am, Cm) bearing compounds. The chemical forms of actinide compounds concerned include oxides, nitrides, chlorides and alloys, which are prepared, characterized and subjected to property measurements. In this paper those results on Pu and MA bearing oxides obtained in recent several years are summarized. In addition, the possible challenges of actinide materials research to the subjects of post severe accident of Fukushima-daiich nuclear power station are briefly discussed.  相似文献   

18.
Polycyclic aromatic hydrocarbons are model systems for studying the mechanisms of lithium storage in carbonaceous materials. In this work, Li complexes of naphthalene, pyrene, perylene, and coronene were synthesized in a supersonic metal-cluster beam source and studied by zero-electron-kinetic-energy (ZEKE) electron spectroscopy and density functional theory calculations. The adiabatic ionization energies of the neutral complexes and frequencies of up to nine vibrational modes in the singly charged cations were determined from the ZEKE spectra. The metal-ligand bond energies of the neutral complexes were obtained from a thermodynamic cycle. Preferred Li∕Li(+) binding sites with the aromatic molecules were determined by comparing the measured spectra with theoretical calculations. Li and Li(+) prefer the ring-over binding to the benzene ring with a higher π-electron content and aromaticity. Although the ionization energies of the Li complexes show no clear correlation with the size of the aromatic molecules, the metal-ligand bond energies increase with the extension of the π-electron network up to perylene, then decrease from perylene to coronene. The trends in the ionization and metal-ligand bond dissociation energies of the complexes are discussed in terms of the orbital energies, local quadrupole moments, and polarizabilities of the free ligands and the charge transfer between the metal atom and aromatic molecules.  相似文献   

19.
Photoionization efficiency curves were measured for gas-phase FeO and CuO using tunable vacuum-ultraviolet radiation at the Advanced Light Source. The molecules are prepared using laser ablation of a metal-oxide powder in a novel high-repetition-rate source and are thermally moderated in a supersonic expansion. These measurements provide the first directly measured ionization energy for CuO, IE(CuO)=9.41 +/- 0.01 eV. The direct measurement also gives a greatly improved ionization energy for FeO, IE(FeO) = 8.56 +/- 0.01 eV. The ionization energy connects the dissociation energies of the neutral and cation, leading to a refined bond strength for the FeO cation: D0(Fe(+)-O)=3.52 +/- 0.02 eV. A dramatic increase in the photoionization cross section at energies of 0.36 eV above the threshold ionization energy is assigned to autoionization and direct ionization involving one or more low-lying quartet states of FeO+. The interaction between the sextet ground state and low-lying quartet states of FeO+ is key to understanding the oxidation of hydrogen and methane by FeO+, and these experiments provide the first experimental observation of the low-lying quartet states of FeO+.  相似文献   

20.
We have investigated the dissociation behavior of the radical helium dimer He(2) (+) using the Piris natural orbital functional (PNOF). This system is particularly challenging to be described by standard density functionals. The restricted open formulation of the PNOF-2, as well as the PNOF-2 energy plus the extended Koopmans' vertical ionization potential calculations of the neutral helium dimer, have been tested for calculating the ground-state energies of He(2) (+) as a function of the internuclear distance. For comparison, we present the dissociation curve obtained with the diffusion Monte Carlo method. The dissociation energies, equilibrium bond lengths, and rovibrational levels are reported. The obtained potential energy curves indicate that PNOF-2 yields a correct and accurate dissociation behavior for the helium radical dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号