首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical reduction of 4-chloro-2-nitrobenzenediazonium chloride salt in the presence of hypophosphorous acid and carbon powder results in functionalized carbon powder with chloronitrophenyl groups attached on carbon particle surface. This type of bulk derivatization protocol is very useful and most inexpensive compared to widely used electrochemically assisted derivatization protocol. The derivatized carbon powder has been characterized by studying its Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetric studies. The surface functionalized moieties have been examined electrochemically by immobilizing them onto the surface of basal plane pyrolytic graphite electrode and studying its cyclic voltammetry. The effect of pH, scan rate (v), and the peak potentials (E p) as a function of pH has revealed that the species are surface bound in nature and covalently attached on the carbon surface. The FTIR studies of the derivatized carbon powder have revealed that the modifying molecule is covalently attached on the carbon particle surface.  相似文献   

2.
Cationic latex particles with surface amino groups were prepared by a multistep batch emulsion polymerization. In the first one or two steps, monodisperse cationic latex particles to be used as the seed were synthesized, and in the third step, two different amino‐functionalized monomers [aminoethylmethacrylate hydrochloride (AEMH) and vinylbenzylamine hydrochloride (VBAH)] were used to synthesize the final functionalized latex particles. 2,2′‐Azobisisobutyramidine dihydrochloride was used as the initiator, and different concentrations of two quaternary ammonium emulsifiers with hydrophobic chains of different lengths were examined. To characterize the final latexes yields were obtained gravimetrically, and particle size distributions and average particle diameters were determined by transmission electron microscopy and photon correlation spectroscopy. The amount of amino groups was determined by fluorimetry. The effect of the amino‐functional monomer used on the final latexes and the colloidal behavior of the system were studied. The influence of the different conditions utilized to synthesize the latexes on the colloidal stability of the particles was evaluated in terms of the Fuchs stability ratio and electrophoretic mobility. High yields of the amino‐functional monomers were obtained. Surface amino, amidine, and quaternary ammonium groups provided the cationic character. The colloidal stability behavior of the products obtained was compatible with their cationic character. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2929–2936, 2001  相似文献   

3.
A membrane structure consisting of an aligned array of open ended carbon nanotubes (7 nm i.d.) spanning across an inert polymer matrix allows the diffusive transport of aqueous ionic species through CNT cores. The plasma oxidation process that opens CNTs tips inherently introduces carboxylic acid groups at the CNT tips, which allows for a limited amount of chemical functional at the CNT pore entrance. However for numerous applications, it is important to increase the density of carboxylic acid groups at the pore entrance for effective separation processes. Aqueous diazonium-based electrochemistry significantly increases the functional density of carboxylic acid groups. pH dependent dye adsorption–desorption and interfacial capacitance measurements indicate 5–6 times increase in functional density. To further control the spatial location of the functional chemistry, a fast flowing inert liquid column inside the CNT core is found to restrict the diazonium grafting to the CNT tips only. This is confirmed by the increased flux of positively charged with anionic functionality. The electrostatic enhancement of ion diffusion is readily screened in 0.1 M electrolyte solution consistent with the membrane pore geometry and increased functional density.  相似文献   

4.
The ion distribution around electrostatically stabilized polystyrene latex spheres for different ionic strengths is investigated by ellipsometric light scattering. This method is sensitive to the refractive index profile around colloidal particles, which is affected by the local salt content. At an average salt concentration of c* = 10(-4) mol L(-1), the ion concentration at the particle interface increases discontinuously, and a layer of high salt content with 20-30 nm thickness is built up. The observation cannot be explained within the framework of the Poisson-Boltzmann equation; it rather resembles a prewetting transition. Interactions that could possibly lead to a stabilization of the observed layer of high salt content are discussed.  相似文献   

5.
Carbon modified by the reduction of aromatic diazonium derivatives was first used as electrode for the electrochemical stripping analysis of heavy metals. As a model, the glassy carbon electrode was modified with benzoic acid by electrochemical reduction of diazobenzoic acid, and the resulting modified electrodes were used for determination of Cd2+ and Pb2+. The anodic peak currents of cadmium and lead at the benzoic acid-modified glassy carbon electrode are 7.2 and 6 times of that at the bare glassy carbon electrode. A linear response was observed for Pb2+ and Cd2+ in the range of 0.5–50 μg/l. The detection limits are 0.20 μg/l for Pb2+ and 0.13 μg/l for Cd2+. The relative standard deviations for six consecutive measurements of 50 μg/l Cd2+ and 50 μg/l Pb2+ are 0.82% and 3.02%, respectively. Applicability of the sensor to the determination of Cd2+ and Pb2+ in sewerage samples was demonstrated.  相似文献   

6.
Monodispersed polymer colloids with aldehyde and acetal functionalities, introduced by the macromonomer technique, were synthesized by a two‐step emulsion polymerization process. The latex samples so formed were chosen as the polymeric support to carry out covalent coupling with the antibody IgG anti‐C reactive protein, to test the utility of the latex–protein complexes formed in immunoassays. More than the 45% of the initially linked protein was covalently coupled in the acetal latex samples. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
An easy-to-prepare, reusable and versatile catalyst consisting of oxidised copper nanoparticles on activated carbon has been fully characterised and found to effectively promote the multicomponent synthesis of 1,2,3-triazoles from organic halides, diazonium salts, and aromatic amines in water at a low copper loading.  相似文献   

8.
Informational theory and a geometric approach to factor analysis were employed to evaluate the degree of orthogonality of a two-dimensional reversed-phase-reversed-phase chromatographic system. The system incorporated a C18 column as one dimension and a carbon clad zirconia column as the second dimension. In order to study the resolving power of this system, the separation of a sample matrix containing an artificial mix of 32 isomers (structural and diastereoisomers) was evaluated. Using this system, between 25 and 28 of the 32 isomers could be separated, depending on the mobile phase combinations--with resolution that could not possibly be achieved in a single one dimensional separation. The results from this study indicate that in order to fully evaluate the resolving power of a 2D system multiple methods of analysis are most appropriate. This becomes increasingly important when the sample contains components that are very closely related and the retention of solutes is clustered in one quadrant of the 2D space. Ultimately, the usefulness of the 2D separation is determined by the goals of analyst.  相似文献   

9.
Stable chitosan‐modified polymethyl methacrylate (PMMA) latex particles were prepared by using 2,2′‐azobis(2‐amidinopropane) dihydrochloride (V‐50) as the cationic initiator. The polymerization rate (Rp) is controlled by the V‐50 concentration ([V‐50]) and Rp is less sensitive to the chitosan concentration ([C]) used in the synthesis work. The reaction system follows Smith–Ewart Case III kinetics due to the relatively large particles produced. The zeta potential data show that the isoelectric point (pI) of the latex particles is 10.7. The amounts of V‐50 (CV‐50) and chitosan (Cc) ultimately incorporated into the particles correlate reasonably well with [V‐50] and [C], respectively. At pH 7, the quantity of the negatively charged bovine serum albumin (BSA, pI = 4.8) adsorbed on the positively charged chitosan‐free particles (Q) via the electrostatic interaction increases with increasing CV‐50. However, Q is relatively insensitive to changes in Cc. This result implies that only the outermost region of the hairy chitosan‐modified particles is available for adsorption of the relatively large protein species. Colloidal stability shows a significant influence on the BSA adsorption process. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1489–1499, 1999  相似文献   

10.
Cationic latex particles with surface amino groups were prepared by a multistep batch emulsion polymerization. In the first one, two or three steps, monodisperse cationic latex particles to be used as the seed were synthesized. In the third and fourth steps, the amino‐functionalized monomer aminoethylmethacrylate hydrochloride was used to synthesize the final functionalized latex particles. Three different azo initiators 2,2′‐azobisisobutyramidine dihydrochloride, 2,2′‐azobisdimethylenisobutyramidine dihydrochloride, and 2,2′‐azobisisobutyronitrile were used as initiators. Hexadecyltrimethylammonium bromide was the emulsifier. To characterize the final latices, conversions were obtained gravimetrically, and particle size distributions and average particle diameters were determined by transmission electron microscopy and photon correlation spectroscopy. The amount of amino groups was determined by conductimetric titrations. Colloidal aspects were ascertained by measuring the electrophoretic mobilities. Activation of these particles with glutaraldehyde produced an efficient reagent for latex‐enhanced immunoassay. The covalent coupling efficiency (protein covalently bound with respect to the total amount of protein adsorbed) was compressed between 50 and 80%. The developed immunoreagent was applied to the measurement of serum ferritin concentration in a new turbidimetric procedure that was compared with a commercial nephelometric method; the results obtained with both methods demonstrated that the two procedures correlated well (r = 0.992). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2404–2411, 2003  相似文献   

11.
Aim of this work was to explore the possibility of retention and selectivity tuning in reversed-phase liquid chromatography by means of chemically modified multi-walled carbon nanotubes (MWCNTs). These were synthesized by derivatizing pristine MWCNTs with amino-terminated alkyl chains containing polar embedded groups. A novel hybrid material based on functionalized MWCNTs (MWCNTs-R-NH2) was prepared, characterized and tested. The idea was to design a mixed-mode separation medium basing its sorption properties on the peculiar characteristics of MWCNTs combined with the chemical interactions provided by the functional chains introduced on the nanotube skeleton. MWCNTs-R-NH2 were easily grafted to silica microspheres by gamma radiation (using a 60Co source) in the presence of polybutadiene as the linking agent. The composite was characterized by scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) analysis in terms of structural morphology, surface area and porosity. The MWCNTs-R-NH2 sorbent was tested as stationary phase. The reversed-phase behaviour was first proved by analysis of alkylbenzenes, while the key role of CNT derivatization in addressing the selectivity/affinity towards the solutes was evidenced by testing three classes of analytes, viz. barbiturates, steroid hormones and alkaloids. These compounds, with different molecular structure and polarity, were here analysed for the first time on CNT-based LC stationary phases. The behaviour of the novel sorbent was compared in terms of retention capability and resolution with that observed using unmodified MWCNTs, pointing out the mixed-mode characteristics of the MWCNTs-R-NH2 material. The same test mixtures were analysed also on a conventional mono-modal separation sorbent (C18) to highlight the particular behaviour of the (derivatized)MWCNTs-based stationary phases. The novel material showed better performance in separation of polar compounds, i.e. barbiturates and alkaloids, than the unmodified MWCNTs and than the C18 column. Results showed that MWCNT functionalization is powerful to modulate retention/selectivity in reversed-phase liquid chromatography.  相似文献   

12.
Silica nanoparticles were surface-functionalized with diazonium groups. The reaction steps leading to the formation of the diazonium functionality were followed with IR and XPS, and the structure of the diazonium-functionalized nanoparticle was confirmed with solid state NMR. Nanoparticle size distribution was determined with DLS, SEM, and TEM. The nanoparticles were then covalently bonded to gold and iron surfaces. Their spatial distribution over the metal surface was analyzed by SEM. Diazonium modification of nanoparticles represents a new method for the covalent attachment of nanoparticles to metal surfaces.  相似文献   

13.
Cao XN  Lin L  Zhou YY  Shi GY  Zhang W  Yamamoto K  Jin LT 《Talanta》2003,60(5):1063-1070
In this paper, multi-wall carbon nanotubes fuctionalized with carboxylic groups modified electrode (MWNT-COOH CME) was fabricated. This chemically modified electrode (CME) can be used as the working electrode in the liquid chromatography for the determination of 6-mercaptopurine (6-MP). The results indicate that the CME exhibits efficiently electrocatalytic oxidation for 6-MP with relatively high sensitivity, stability and long-life. The peak currents of 6-MP are linear to its concentrations ranging from 4.0×10−7 to 1.0×10−4 mol l−1 with the calculated detection limit (S/N=3) of 2.0×10−7 mol l−1. Coupled with microdialysis, the method has been successfully applied to the pharmacokinetic study of 6-MP in rabbit blood. This method provides a fast, sensible and simple technique for the pharmacokinetic study of 6-MP in vivo.  相似文献   

14.
A simple, polishable and renewable DNA biosensor was fabricated based on a zirconia modified carbon paste electrode. Zirconia was mixed with graphite powder and paraffin wax to produce the paste for the electrode, and response-optimized at 56% graphite powder, 19% ZrO(2) and 25% paraffin wax. An oligonucleotide probe with a terminal 5'-phosphate group was attached to the surface of the electrode via the strong affinity of zirconia for phosphate groups. DNA immobilization and hybridization were characterized by cyclic voltammetry and differential pulse voltammetry, using methylene blue as indicator. Examination of changes in response with complementary or non-complementary DNA sequences showed that the developed biosensor had a high selectivity and sensitivity towards hybridization detection (< or =2x10(-10) M complementary DNA detectable). The surface of the biosensor can be renewed quickly and reproducibly (signal RSD+/-4.6% for five successive renewals) by a simple polishing step.  相似文献   

15.
N-Succinimidyl ester functionalized polypyrrole-coated polystyrene latex particles (PSE-PPyNSE) were prepared by the in situ copolymerization of pyrrole and the active ester-functionalized pyrrole (pyrrole-NSE) in the presence of polystyrene latex particles. Polystyrene microspheres were prepared by emulsion polymerization (PSE) leading to particles having a diameter of 450 nm. These PSE particles were precoated with poly(N-vinylpyrrolidone) prior to the in situ copolymerization of pyrrole and pyrrole-NSE. The initial comonomer concentration fractions were 25/75, 50/50 and 75/25 for pyrrole and pyrrole-NSE, respectively. The PPy-coated PSE particles were characterized in terms of morphology, particle size, electrophoretic mobility and chemical composition. The study of morphology by means of scanning electron microscopy showed roughening of the underlying PSE particles owing to the addition of PPyNSE, the overlayer thickness of which was estimated to be around 7 nm. Moreover, loading PPyNSE overlayers resulted in a shift of the electrophoretic mobility from –5.31 m cm/V s to a very small but positive value (0.082–0.112 m cm/V s). X-ray photoelectron spectroscopy and IR spectroscopy permitted the detection of pyrrole-NSE repeat units at the surface indicating that pyrrole and pyrrole-NSE did indeed copolymerize. The PSE-PPyNSE particles were further evaluated as bioadsorbents of human serum albumin used as a test protein. For this study, PSE-PPyNSE50 particles, synthesized from a comonomer feed ratio of 50/50 in pyrrole/pyrrole-NSE, were used and were shown to attach efficiently human serum albumin macromolecules with a maximum amount of 0.2 mg m–2.
Mohamed M. ChehimiEmail:
  相似文献   

16.
17.
Summary Chromatographic properties of silica, alumina, titania and zirconia have been investigated in normal phase mode in the separation of test mixtures of basic, neutral and acidic compounds. In contrast to silica the chromatographic behaviour revealed the basic properties of the alumina, titania and zirconia surfaces. Therefore, separation of basic compounds on these packings seems very promising. Lypophilic packings have been synthesized by modification of titania, zirconia and alumina with organosilanes and polymers and tested for the separation of basic compounds and proteins. High hydrolytic stability of the modified packings was observed during separations with strong alkali and acidic eluents.  相似文献   

18.

The food antioxidant quercetin was used as a template in an ultrathin molecularly imprinted polymer (MIP) film prepared by photopolymerization. Indium tin oxide (ITO) plates were electrografted with aryl layers via a diazonium salt precursor bearing two terminal hydroxyethyl groups. The latter act as hydrogen donors for the photosensitizer isopropylthioxanthone and enabled the preparation of MIP grafts through radical photopolymerization of methacrylic acid (the functional monomer) and ethylene glycol dimethacrylate (the crosslinker) in the presence of quercetin (the template) on the ITO. The template was extracted, and the remaining ITO electrode used for the amperometric determination of quercetin at a working potential of 0.26 V (vs. SCE). The analytical range is from 5.10−8 to 10−4 mol L−1, and the detection limit is 5.10−8 mol L−1.

This work describes the grafting of a molecularly imprinted polymer (MIP) film by combining diazonium surface chemistry and surface-initiated photopolymerization. The MIP grafts specifically and selectively recognize quercetin in pure solution in THF and in real green tea infusion.

  相似文献   

19.
The food antioxidant quercetin was used as a template in an ultrathin molecularly imprinted polymer (MIP) film prepared by photopolymerization. Indium tin oxide (ITO) plates were electrografted with aryl layers via a diazonium salt precursor bearing two terminal hydroxyethyl groups. The latter act as hydrogen donors for the photosensitizer isopropylthioxanthone and enabled the preparation of MIP grafts through radical photopolymerization of methacrylic acid (the functional monomer) and ethylene glycol dimethacrylate (the crosslinker) in the presence of quercetin (the template) on the ITO. The template was extracted, and the remaining ITO electrode used for the amperometric determination of quercetin at a working potential of 0.26 V (vs. SCE). The analytical range is from 5.10?8 to 10?4 mol L?1, and the detection limit is 5.10?8 mol L?1.
Figure
This work describes the grafting of a molecularly imprinted polymer (MIP) film by combining diazonium surface chemistry and surface-initiated photopolymerization. The MIP grafts specifically and selectively recognize quercetin in pure solution in THF and in real green tea infusion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号