首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider perturbations in a cosmological model with a small coupling between dark energy and dark matter. We prove that the stability of the curvature perturbation depends on the type of coupling between dark sectors. When the dark energy is of quintessence type, if the coupling is proportional to the dark matter energy density, it will drive the instability in the curvature perturbations; however if the coupling is proportional to the energy density of dark energy, there is room for the stability in the curvature perturbations. When the dark energy is of phantom type, the perturbations are always stable, no matter whether the coupling is proportional to the one or the other energy density.  相似文献   

2.
In this article we consider the cosmological model based on the holographic dark energy. We study dark energy density in Universe with arbitrary spatially curvature described by the Friedmann-Robertson-Walker metric. We use Chevallier-Polarski-Linder parametrization to specify dark energy density.  相似文献   

3.
In this paper we study the late evolution of Relic Gravitational Waves in coupled dark energy models, where dark energy interacts with cold dark matter. Relic Gravitational Waves are second tensorial order perturbations of the Lemaitre–Friedman–Robertson–Walker metric and experiment an evolution ruled by the scale factor of the metric. We find that the amplitude of Relic Gravitational Waves is smaller in coupled dark energy models than in models with non interacting dark energy. We also find that the amplitude of the waves predicted by the models with coupling term proportional to the dark energy density is smaller than those of the models with coupling term proportional to dark matter density.  相似文献   

4.
In this paper we investigate the holographic dark energy scenario in higher derivative gravity with a varying gravitational constant. We introduce a kind of energy density from higher derivative gravity which has role of the same as holographic dark energy. We obtain the exact differential equation , which determine the evolution of the dark energy density based on varying gravitational constant G. We also find out a cosmological application of our work by evaluating a relation for the equation of state of dark energy for low redshifts containing varying G correction.  相似文献   

5.
Purpose of the present paper is to view the correspondence between Ricci and other dark energies. We have considered the Ricci dark energy in presence of dark matter in non-interacting situation. Subsequently, we have derived the pressure and energy density for Ricci dark energy. The equation of state parameter has been generated from these pressure and energy density. Next, we have considered the correspondence between Ricci and other dark energy models, namely tachyonic field, DBI-essence and new agegraphic dark energy without any interaction and investigated possible cosmological consequences.  相似文献   

6.
In this article we investigate the relation between the temperature and density of the dark energy. We find that the temperature of the dark universe is proportional to the inverse of dark energy density. Also we discuss some values of the important parameters of the theory.  相似文献   

7.
In this article we consider holographic dark energy model with interaction and space curvature. We calculate cosmic scale factor by using the time-dependent dark energy density. Then we obtain phenomenological interaction between holographic dark energy and matter.  相似文献   

8.
We discuss the energy density, temperature and entropy of dark matter (DM) and dark energy (DE) as functions of the scale factor a in an expanding universe. In a model of non-interacting dark components we repeat a derivation from thermodynamics of the well-known relations between the energy density, entropy and temperature. In particular, the entropy is constant as a consequence of the energy conservation. We consider a model of a DM/DE interaction where the DM energy density increase is proportional to the particle density. In such a model the dependence of the energy density and the temperature on the scale factor a is substantially modified. We discuss (as a realization of the model) DM which consists of relativistic particles diffusing in an environment of DE. The energy gained by the dark matter comes from a cosmological fluid with a negative pressure. We define the entropy and free energy of such a non-equilibrium system. We show that during the universe evolution the entropy of DM is increasing whereas the entropy of DE is decreasing. The total entropy can increase (in spite of the energy conservation) as the DM and DE temperatures are different. We discuss non-equilibrium thermodynamics on the basis of the notion of the relative entropy.  相似文献   

9.
We consider the new agegraphic model of dark energy with a varying gravitational constant, G, in a non-flat universe. We obtain the equation of state and the deceleration parameters for both interacting and noninteracting new agegraphic dark energy. We also present the equation of motion determining the evolution behavior of the dark energy density with a time variable gravitational constant. Finally, we generalize our study to the case of viscous new agegraphic dark energy in the presence of an interaction term between both dark components.  相似文献   

10.
In this work we perform some studies related to dark energy. Firstly, we propose a dynamical approach to explain the dark energy contents of the universe. We assume that a massless scalar field couples to the Hubble parameter with some Planck-mass suppressed interactions. This scalar field develops a Hubble parameter-dependent (thus time-dependent) vacuum expectation value, which renders a time-independent relative density for the dark energy and thus can explain the coincidence of the dark energy density of the universe. Furthermore, we assume that the dark matter particle is metastable and decays very late into the dark energy scalar field. Such a conversion of matter to dark energy can give an explanation for the starting time of the accelerating expansion of the universe. Secondly, we introduce multiple Affleck-Dine fields to the landscape scenario of dark energy in order to have the required baryon-asymmetrical universe. PACS: 95.36. + x, 95.35. + d  相似文献   

11.
In this paper we consider holographic dark energy model with interaction in the flat space-time with non-zero cosmological constant. We calculate cosmic scale factor and Hubble expansion parameter by using the time-dependent dark energy density. Then, we obtain phenomenological interaction between holographic dark energy and matter. We fixed our solution by using the observational data.  相似文献   

12.
Recent cosmological observations strongly suggest that the Universe is dominated by an unknown form of energy with negative pressure. Why is this dark energy density of order the critical density today? We propose that the dark energy has periodically dominated in the past so that its preponderance today is natural. We illustrate this paradigm with a model potential and show that its predictions are consistent with all observations.  相似文献   

13.
We investigate the holographic dark energy scenario with a varying gravitational constant, in flat and non-flat background geometry. We extract the exact differential equations determining the evolution of the dark energy density-parameter, which include G-variation correction terms. Performing a low-redshift expansion of the dark energy equation of state, we provide the involved parameters as functions of the current density parameters, of the holographic dark energy constant and of the G-variation.  相似文献   

14.
We discuss the coupling between dark energy and matter by considering a homogeneous tachyonic scalar field as a candidate for dark energy.We obtained the functional form of scale factor by assuming that the coupling strength depends linearly on the Hubble parameter and energy density.We also estimated the cosmic age of the Universe for different values of coupling constant.  相似文献   

15.
In this article we describe a model of the universe consisting of a mixture of the ordinary matter and a so-called cosmic quaternionic field. The basic idea here consists in an attempt to interpret as the energy density of the quaternionic field whose source is any form of energy including the proper energy density of this field. We set the energy density of this field to and show that the ratio of ordinary dark matter energy density assigned to is constant during the cosmic evolution. We investigate the interaction of the quaternionic field with the ordinary dark matter and show that this field exerts a force on the moving dark matter which might possible create the dark matter in the early universe. Such determined fulfils the requirements asked from the dark energy. In this model of the universe, the cosmological constant, the fine-tuning and the age problems might be solved. Finally, we sketch the evolution of the universe with the cosmic quaternionic field and show that the energy density of the cosmic quaternionic field might be a possible candidate for the dark energy.  相似文献   

16.
We analyze a model of cold axion dark matter weakly coupled with a dark gluon condensate,reproducing dark energy.We first review how to recover the dark energy behavior using the functional renormalization group approach,and ground our study in the properties of the effective Lagrangian,to be determined non-perturbatively.Then,within the context of G_(SM)×SU(2)_D×U(1)_(P Q),we consider Yang-Mills condensate(YMC)interactions with QCD axions.We predict a transfer of dark energy density into dark matter density,that can be tested in the next generation of experiments dedicated to dark energy measurements.We obtain new bounds on the interactions between the Yang-Mills condensate and axion dark matter from Planck data:the new physics interaction scale related to the axion/gluon condensate mixing is constrained to be higher than the 10~6GeV energy scale.  相似文献   

17.
In this paper, we study holographic Ricci dark energy model with non-constant c 2 term in dark energy density formula. We consider FRW metric in flat space-time and calculate density. Also we find scale factor and Hubble expansion parameter.  相似文献   

18.
In this paper, viscous generalized Chaplygin gas as a model of dark energy considered. We assume non-constant bulk viscous coefficient and study dark energy density. We consider several cases of density-dependent viscosities. We find that, in the special case, the viscous generalized Chaplygin gas is corresponding to modified Chaplygin gas.  相似文献   

19.
The transient acceleration which the current cosmic acceleration is not eternal is possible by introducing the interaction between dark matter and dark energy. If the energy transfer is from dark energy to dark matter, then it is possible to realize the transient acceleration. We study the possibility of transient acceleration by considering two time-dependent phenomenological interaction forms so that the energy transfer increases as the universe evolves. Starting from a simple and extending to a more complicated ansatz, we obtain analytical expressions for the evolutions of the deceleration and the various energy density parameters. We find the ranges of the parameters in the models for a transient acceleration.  相似文献   

20.
Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号