首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a hybrid vertex-centered finite volume/finite element method for solution of the two dimensional (2D) incompressible Navier-Stokes equations on unstructured grids.An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling.The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by joining the centroid of cells sharing the common vertex.For the temporal integration of the momentum equations,an implicit second-order scheme is utilized to enhance the computational stability and eliminate the time step limit due to the diffusion term.The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite element method (FEM).The momentum interpolation is used to damp out the spurious pressure wiggles.The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both velocity and pressure.The classic test cases,the lid-driven cavity flow,the skew cavity flow and the backward-facing step flow,show that numerical results are in good agreement with the published benchmark solutions.  相似文献   

2.
The effect of distributed bubble nuclei sizes on shock propagation in a bubbly liquid is numerically investigated. An ensemble-averaged technique is employed to derive the statistically averaged conservation laws for polydisperse bubbly flows. A finite-volume method is developed to solve the continuum bubbly flow equations coupled to a single-bubble-dynamic equation that incorporates the effects of heat transfer, liquid viscosity and compressibility. The one-dimensional shock computations reveal that the distribution of equilibrium bubble sizes leads to an apparent damping of the averaged shock dynamics due to phase cancellations in oscillations of the different-sized bubbles. If the distribution is sufficiently broad, the phase cancellation effect can dominate over the single-bubble-dynamic dissipation and the averaged shock profile is smoothed out.  相似文献   

3.
4.
The no‐slip condition is an assumption that cannot be derived from first principles and a growing number of literatures replace the no‐slip condition with partial‐slip condition, or Navier‐slip condition. In this study, the influence of partial‐slip boundary conditions on the laminar flow properties past a circular cylinder was examined. Shallow‐water equations are solved by using the finite element method accommodating SU/PG scheme. Four Reynolds numbers (20, 40, 80, and 100) and six slip lengths were considered in the numerical simulation to investigate the effects of slip length and Reynolds number on characteristic parameters such as wall vorticity, drag coefficient, separation angle, wake length, velocity distributions on and behind the cylinder, lift coefficient, and Strouhal number. The simulation results revealed that as the slip length increases, the drag coefficient decreases since the frictional component of drag is reduced, and the shear layer developed along the cylinder surface tends to push the separation point away toward the rear stagnation point so that it has larger separation angle than that of the no‐slip condition. The length of the wake bubble zone was shortened by the combined effects of the reduced wall vorticity and wall shear stress which caused a shift of the reattachment point closer to the cylinder. The frequency of the asymmetrical vortex formation with partial slip velocity was increased due to the intrinsic inertial effect of the Navier‐slip condition. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A finite difference study of the unsteady two-dimensional flow past a circular cylinder has been conducted using vorticity and streamfunction as the dependent variables. The two cases considered were impulsively started and decelerated flows. The impulsively started problem was considered to validate the method and has yielded results which agree quite closely with existing results from both calculations and experiments. The decelerated flow analysis produced results which can be explained in terms of induced velocity effects from existing wake vortices for both suddenly stopped and uniformly decelerated flows.  相似文献   

6.
This paper presents first results of numerical simulation of turbulent free-surface flow. Simple implementation of surface capturing method is based on the variable density approach. The flow is treated as if there is only one fluid, but with variable material properties (density, viscosity). The switch in these values is done by a function resulting from the mass conservation principle. This approach simplifies the implementation of turbulence model. In this case the SST k−ω model was chosen in modification given by Hellsten.Numerical solution was carried out by finite-volume method with explicit Runge-Kutta time-integration. The artificial compressibility method was used for time-marching search for steady state solution. The whole model was tested on horizontally placed square-sectioned 90 bend, which was partially filled by the water. The main goal of this study was to demonstrate the applicability of this model and solution method for capturing the water-air interface as well as for predicting the turbulent effects in both fluids.  相似文献   

7.
The Xu & Yan scale-adaptive simulation (XYSAS) model is employed to simulate the flows past wavy cylinders at Reynolds number 8 × 10 3.This approach yields results in good agreement with experimental measurements.The mean flow field and near wake vortex structure are replicated and compared with that of a corresponding circular cylinder.The effects of wavelength ratios λ/D m from 3 to 7,together with the amplitude ratios a /D m of 0.091 and 0.25,are fully investigated.Owing to the wavy configuration,a maximum reduction of Strouhal number and root-meansquare (r.m.s) fluctuating lift coefficients are up to 50% and 92%,respectively,which means the vortex induced vibration (VIV) could be effectively alleviated at certain larger values of λ/D m and a /D m.Also,the drag coefficients can be reduced by 30%.It is found that the flow field presents contrary patterns with the increase of λ/D m.The free shear layer becomes much more stable and rolls up into mature vortex only further downstream when λ/D m falls in the range of 5-7.The amplitude ratio a /D m greatly changes the separation line,and subsequently influences the wake structures.  相似文献   

8.
A hybrid unsteady Reynolds-averaged numerical simulation (U-RANS) and probability density function (PDF) method is developed for turbulent non-reactive and reactive flows. The resulting modeled equations are solved by a consistent hybrid finite volume and Lagrangian Monte-Carlo particle method. Both turbulent non-reactive and reactive flows in a rectangular channel containing a triangular-shaped bluff-body are simulated. One-step and two-step mechanisms for propane/air combustion are used for the reactive case. The time-averaged results are compared with both experimental data and numerical results from the literature using large eddy simulation (LES) and steady RANS. The results of the present method are in good agreement with the experimental data, and they improve the numerical results available in the literature.  相似文献   

9.
10.
Laminar flow past a circular cylinder with multiple small-diameter control rods is numerically investigated in this study. The effects of rod-to-cylinder spacing ratio, rod and cylinder diameter ratio, cylinder Reynolds number, number of control rods and angle of attack on the hydrodynamics of the main circular cylinder are investigated. Four different flow regimes are identified based on the mechanism of lift and drag reduction. The range of rod-to-cylinder spacing ratio where significant force suppression can be achieved is found to become narrower as the Reynolds number increases in the laminar regime, but is insensitive to the diameter ratio. The numerical results for the case with six identical small control rods at Re=200 show that the lift fluctuation on the main cylinder can be suppressed significantly for a large range of spacing ratio and various diameter ratios, while the drag reduction on the main cylinder is also achieved simultaneously. The six-control-rod arrangement has shown better performance in flow control than the arrangements with less control rods, especially in terms of force reduction at various angles of attack.  相似文献   

11.
The droplet dynamics passing through a cylinder obstruction was investigated with direct numerical simulations with FE-FTM (Finite Element-Front Tracking Method). The effect of droplet size and capillary number (Ca) was studied for both Newtonian and viscoelastic fluids. In the case of Newtonian droplet immersed in Newtonian medium, the droplet breakup induced by the geometric hindrance depends on the droplet size. As Ca increases, the short droplets (1.3 times longer than the channel width) break up while passing through the obstruction. However, the breakup does not occur for longer droplets (1.8 times longer than the channel width). When the viscoelastic fluid characterized by the Oldroyd-B model is considered, the Newtonian droplet immersed in viscoelastic medium breaks up into two smaller droplets while passing through the cylinder obstruction with increasing Dem (Deborah number of the medium). We also show that the normal stress difference plays a key role on the droplet breakup and the droplet extension. The normal stress difference is enhanced in the negative wake region due to the droplet flow, which also promotes droplet extension in that region. This numerical study provides information not only on underlying physics of the droplet flows passing through a cylinder obstruction but also on the useful guidelines for microfluidic applications.  相似文献   

12.
A numerical analysis of the flow pattern in the inlet region of a circular pipe rotating steadily about an axis parallel to its own is presented. Both finite cell and finite element methods are used to analyse the problem and they give qualitatively similar results which show that a swirling fluid motion is induced in the pipe inlet region. The analyses show that the direction of swirl is opposite to that of the pipe rotation when viewed along the flow axis and that its magnitude depends on the speed of pipe rotation and throughflow Reynolds number. Neither numerical analysis predicts the marked upturn in friction factor (or pressure drop) which has been observed experimentally. However, a dependence on the pipe inlet boundary conditions is demonstrated.  相似文献   

13.
The results of a numerical study of the viscous oscillating flow past four circular cylinders, for a constant frequency parameter equal to 50 and KC ranging between 0.2 and 10, are presented. The cylinders were placed on the vertices of a square, two sides of which were perpendicular and two parallel to the oncoming flow, for pitch ratios, P/D, ranging between 2 and 5. The finite-element method was employed for the solution of the Navier-Stokes equations, in the formulation where the stream function and the vorticity are the field variables, whereas the pressure distribution throughout the computational domain was obtained from the solution of Poisson’s equation. When the Keulegan-Carpenter number is lower than 4, the flow remains symmetrical with respect to the horizontal axis of symmetry of the solution domain and periodic at consecutive cycles. As KC increases to 4, the flow becomes aperiodic in different cycles, although symmetry with respect to the horizontal central line of the domain is preserved. For KC equal to 5, asymmetries appear intermittently in the flow, which are eventually amplified as KC increases still further. These asymmetries, in association with the aperiodicity of flow in different cycles, lead to an almost chaotic configuration as KC grows larger. For characteristic cases the flow pattern and the time histories of the in-line and transverse forces exerted on the cylinders are presented. The mean transverse forces acting on the cylinders, the r.m.s. values of the in-line and transverse forces, together with the drag and inertia coefficients of the in-line force, were evaluated for each pitch ratio in the range of Keulegan-Carpenter numbers examined and are presented in diagrams.  相似文献   

14.
We have analyzed an incompressible Sisko fluid through an axisymmetric uniform tube with a sinusoidal wave propagating down its walls. The present analysis of non- Newtonian fluid is investigated under the considerations of long wavelength and low Reynolds number approximation. The analytic solution is obtained using (i) the regular perturbation method (ii) the Homotopy analysis method (HAM). The comparison of both the solutions is presented graphically. The results for the pressure rise, frictional force and pressure gradient have been calculated numerically and the results are studied for various values of the physical parameters of interest, such as α (angle of inclination), b^* (Sisko fluid parameter), Ф (amplitude ratio) and n (power law index). Trapping phenomena is discussed at the end of the article.  相似文献   

15.
A numerical simulation of reaction injection molding (RIM) of polymeric foam is developed, using a finite volume method (FVM). In this study we predict mold filling with a variable‐density fluid that fills a mold by self‐expansion. We deal with two‐dimensional, isothermal cases. With the assumptions of ideal mixing and rapid bubble nucleation, the foam is modelled as a continuum with a time‐dependent density. The continuum is assumed to be a Newtonian fluid. We develop a pressure‐based FVM for unstructured meshes that includes the SIMPLE algorithm with treatment of fluid compressibility. Cell‐based, co‐located storage is used for all physical variables. To treat the moving interface, an explicit high‐resolution interface capturing method is used. Foam flow in a slit is investigated, and the numerical calculations are in good agreement with an approximate analytic solution. For fountain flow in a rectangular cavity, the shape of the flow front is flatter and the traces of the particles are more complicated for an expanding foam than for a constant‐density fluid. An example of mold filling by an expanding foam demonstrates the geometric flexibility of the method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The development of a two‐dimensional viscous incompressible flow generated by a deformable circular cylinder impulsively started into rectilinear motion is studied numerically for the Reynolds numbers equal to 550 and 3000. The vorticity transport equation is solved by a second‐order finite difference method in both directions of the domains. The Poisson equation for the streamfunction is solved by a Fourier–Galerkin method in the direction of the flow that is assumed to remain symmetrical and a second‐order finite difference for the radial direction. The advance in time is achieved by a second‐order Adams–Bashforth scheme. The computed results are compared qualitatively with experimental and numerical results done before in the particular non‐deformable case. The comparison is found to be satisfactory. The influence of the deformation of the cylinder on the flow structure and the drag coefficient is then analyzed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
The three-dimensional (3D) unsteady viscous wake of a circular cylinder exposed to a steady approach flow is calculated using a fractional-step finite-difference/spectral-element method. The calculated flow fields at Reynolds numbers of 100 (2D) and 200 (3D) are examined in detail. The flow field at Re = 100 is 2D as expected, while the flow field at Re = 200 has distinct 3D features, with spanwise wavelengths of about 3.75 cylinder diameters. The calculated results produce drag and lift coefficients and Strouhal numbers that agree extremely well with the experimental values. These 3D values at Re = 200 are in better agreement with experimental values than the results of a 2D calculation at Re = 200, which is expected. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
A kinetic flux-vector-splitting method has been used to solve the Euler equations for inviscid, compressible flow on unstructured grids. This method is derived from the Boltzmann equation and is an upwind, cell-centered, finite volume scheme with an explicit time-stepping procedure. The Delaunay triangulation has been used to generate the grids. The approach is demonstrated for three flow field simulations, namely the subsonic flow over a two-component high-lift aerofoil, the transonic flow over an aerofoil and the supersonic flow in a channel.  相似文献   

19.
A constrained interpolation profile CIP-based numerical tank is developed to simulate violent free surface flows.The numerical simulation is performed by the CIP-based Cartesian grid method,which is described in the present paper.The tangent of hyperbola for interface capturing(THINC) scheme is applied for capturing complex free surfaces.The new model is capable of simulating a flow with violently varied free surface.A series of computations are conducted to assess the developed algorithm and its versatility.These tests include the collapse of water column with and without an obstacle,sloshing in a fixed tank,the generation of regular waves in a tank,the generation of extreme waves in a tank.Excellent agreements are obtained when numerical results are compared with available analytical,experimental,and other numerical results.  相似文献   

20.
Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonationshock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interesting properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号