首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The propagation of finite pulses of high-frequency in a suspension composed of a distribution of incompressible particles in an incompressible fluid is examined by using the technique of modulated simple-wave theory. The differential equation which governs the propagation of high-frequency pulses is derived and its consequences are examined. The properties of small amplitude high-frequency pulses are examined in detail.  相似文献   

2.
Analytical and numerical solutions are obtained for five unsteady parallel flows of particulate suspensions which exhibit boundary-layer characteristics. The governing equations are based on a continuum theory of particulate suspension behavior. An attempt is made to infer some of the pertinent features of two-phase and multiphase boundary-layer flows from the solutions.  相似文献   

3.
This article presents the development and validation of the Superquadric Discrete Element Method(SuperDEM) for non-spherical particle simulation using a superqu...  相似文献   

4.
Dynamics of model-stabilized colloidal suspensions were investigated by the self-consistent particle simulation method (SC), a new simulation algorithm that takes into account the interaction between the particles and suspending fluid. In this method, the fluid-particle interaction is introduced self-consistently by combining the finite element method (FEM) for fluid motion with Brownian dynamics (BD) for particle dynamics. To validate the reliability of the proposed algorithm, the shear dynamics of the stable particle suspensions were investigated. Relative viscosity and microstructure as a function of dimensionless shear rate at different volume fractions were in good agreement with previous observations. The robustness of the method was also verified through numerical convergence test. The effect of the fluid-particle interaction was well represented in simulations of two model problems, pressure-driven channel flow and rotating Couette flow. Plug-shaped velocity profile was observed in pressure-driven channel flow, which arised from shear thinning behavior of the stable suspension. In rotating Couette flow, shear banded nonlinear flow profile was observed. Although full hydrodynamic interaction (HI) was not rigorously taken into account, it successfully captured the macroscopic structure-induced flow field. It also takes advantage of the geometrical adaptability of FEM and computational efficiency of BD. We expect this newly developed simulation platform to be useful and efficient for probing the complex flow dynamics of particle systems as well as for practical applications in the complex flow of complex fluids.  相似文献   

5.
A theory is developed to describe a structural instability that has been observed during the sedimentation of particulate suspensions through viscoelastic fluids. The theory is based on the assumption that the influence of hydrodynamic interactions in viscoelastic fluids, which tend to cause particles to aggregate, is in competition with hydrodynamic dispersion, which acts to maintain a homogeneous microstructure. In keeping with the experimental observations, it predicts that the suspension structure will stratify into vertical columns when a dimensionless stability parameter exceeds a critical value. The column-to-column separation, measured in particle radii, is predicted to be proportional to the square root of the ratio of the dimensionless dispersion coefficient to the product of the particle volume fraction and the Deborah number. The time for the formation of the columns is predicted to scale with the inverse of the average volume fraction. These predictions are in agreement with experimental data reported in the literature.  相似文献   

6.
Dynamic properties of shear thickening colloidal suspensions   总被引:4,自引:0,他引:4  
The transient shear rheology (i.e., frequency and strain dependence) is compared to the steady rheology for a model colloidal dispersion through the shear thickening transition. Reversible shear thickening is observed and the transition stress compares well to theoretical predictions. Steady and transient shear thickening are observed to occur at the same value of the average stress. The critical strain for shear thickening is found to depend inversely on the frequency at fixed applied stress for low frequencies (high strains), but is limited to an apparent minimum critical strain at higher frequencies. This minimum critical strain is shown to be an artifact of slip. Lissajous plots illustrate the transition in material properties through the shear thickening transition, and the energy dissipated by a shear thickening suspension is analyzed as a function of strain amplitude.  相似文献   

7.
A population balance model for particulate suspension transport with capture of particles by porous medium accounting for complete and incomplete plugging of pores by retained particles is derived. The model accounts for pore space accessibility, due to restriction on finite size particle movement through the overall pore space, and for particle flux reduction, due to transport of particles by the fraction of the overall flux. The novel feature of the model is the residual pore conductivity after the particle retention in the pore and the possibility of one pore to capture several particles. A closed system of governing stochastic equations determines the evolution of size distributions for suspended particles and pores. Its averaging results in the closed system of hydrodynamic equations accounting for permeability and porosity reduction due to plugging. The problem of deep bed filtration of a single particle size suspension through a single pore size medium where a pore can be completely plugged by two particles allows for an exact analytical solution. The phenomenological deep bed filtration model follows from the analytical solution.  相似文献   

8.
Sphericity, as one of the most important shape parameter for non-spherical objects, is extensively applied in evaluating the porosity or packing density of particles. In this paper, the sphericities of common non-spherical objects are deduced and investigated. Maximum sphericities and optimum shapes of these objects are presented as well. A decreasing order of sphericity from sphere (1.0) to regular tetrahedron (0.671) for objects with constant sphericity is given. Similar trends are found in most sphericity–aspect ratio relationships, which exhibit single peak and the sphericity increases with the growth of aspect ratio before the peak point and decreases afterward. The peak loci of aspect ratio are all around 1.0 which makes the shape approaching to a sphere. The information in the paper could be useful as literature for general application.  相似文献   

9.
Quantifying dynamic and rheological properties of suspensions of soft biological particles such as vesicles, capsules, and red blood cells (RBCs) is fundamentally important in computational biology and biomedical engineering. In this review, recent studies on dynamic and rheological behavior of soft biological cell suspensions by computer simulations are presented, considering both unbounded and confined shear flow. Furthermore, the hemodynamic and hemorheological characteristics of RBCs in diseases such as malaria and sickle cell anemia are highlighted.  相似文献   

10.
We use particle-based computer simulations to study the rheology of suspensions of high-functionality star polymers with long entangled arms. Such particles have properties which are intermediate between those of soft colloidal particles and entangled polymer chains. In the simulations, each star polymer is coarse-grained to a single particle. In order to faithfully reproduce dynamical properties, it is very important to not only include time-averaged interactions (potentials of mean force) but to also account for transient interactions induced by entanglements between the arms of different star polymers. Using a model which has all these features, it is found that, for sufficiently high shear rates, the start-up shear stress displays an overshoot. With increasing concentration, the core interactions increasingly dominate the initial stress response, leading to a maximum in the stress overshoot at relatively low strain values (0.1 to 0.5). Transient forces start to dominate after this initial stage. In a simulated experiment in which the shear rate is suddenly stepped-down from a high to a lower value, the stress shows a clear undershoot, with the minimum stress again at a relatively low strain value (based on the new shear rate). Finally, it is shown that a stress plateau develops in the flow curve. This plateau is absent when the transient forces between the polymer stars are not taken into account.  相似文献   

11.
In this paper, a two dimensional Voronoi cell element, formulated with creep, thermal and plastic strain, is applied for the numerical simulation of thermo-mechanical fatigue behavior for particulate reinforced composites. The relation between mechanical fatigue phases and thermal fatigue phases influences the thermo-mechanical fatigue behavior and cyclic creep damage. The topological features of micro-structure in particulate reinforced composites, such as the orientation, depth-width ratio, distribution and volume fraction of inclusions, have a great influence on thermo-mechanical behavior. Some related conclusions are obtained by examples of numerical simulation.The project supported by the Special Funds for the National Major Fundamental Research Projects (2004CB619304), the National Natural Science Foundation of China (10276020 and 50371042), the Key Grant Project of Chinese Ministry of Education (0306)  相似文献   

12.
The basic principle and numerical technique for simulating two three-dimensional bubbles near a free surface are studied in detail by using boundary element method. The singularities of influence coefficient matrix are eliminated using coordinate transformation and so-called 4 π rule. The solid angle for the open surface is treated in direct method based on its definition. Several kinds of configurations for the bubbles and free surface have been investigated. The pressure contours during the evolution of bubbles are obtained in our model and can better illuminate the mechanism underlying the motions of bubbles and free surface. The bubble dynamics and their interactions have close relation with the standoff distances, buoyancy parameters and initial sizes of bubbles. Completely different bubble shapes, free surface motions, jetting patterns and pressure distributions under different parameters can be observed in our model, as demonstrated in our calculation results.  相似文献   

13.
Our works on the fictitious domain method for the direct numerical simulation of particulate flows are reviewed, and particularly our recent progresses in the simulations of the motion of particles in Poiseuille flow at moderately high Reynolds numbers are reported. The method is briefly described, and its capability to simulate the motion of spherical and non-spherical particles in Newtonian, non-Newtonian and non-isothermal fluids is demonstrated. In addition, the applications of the fictitious domain method reported in the literature are also reviewed, and some comments on the features of the fictitious domain method and the immersed boundary method are given.  相似文献   

14.
A dynamic model for the Monte Carlo method is developed to analyze the atom recombination on a catalytic surface. A numerical method for the study of this model is considered. The concentrations of physically and chemically adsorbed atoms obtained using this approach are in good agreement with experimental data and with the numerical results obtained on the basis of the phenomenological model and by other authors with the aid of the Monte Carlo method.  相似文献   

15.
We present an extended finite element method (XFEM) for the direct numerical simulation of the flow of viscoelastic fluids with suspended particles. For moving particle problems, we devise a temporary arbitrary Lagrangian–Eulerian (ALE) scheme which defines the mapping of field variables at previous time levels onto the computational mesh at the current time level. In this method, a regular mesh is used for the whole computational domain including both fluid and particles. A temporary ALE mesh is constructed separately and the computational mesh is kept unchanged throughout the whole computations. Particles are moving on a fixed Eulerian mesh without any need of re-meshing. For mesh refinements around the interface, we combine XFEM with the grid deformation method, in which nodal points are redistributed close to the interface while preserving the mesh topology. Our method is verified by comparing with the results of boundary fitted mesh problems combined with the conventional ALE scheme. The proposed method shows similar accuracy compared with boundary fitted mesh problems and superior accuracy compared with the fictitious domain method. If the grid deformation method is combined with XFEM, the required computational time is reduced significantly compared to uniform mesh refinements, while providing mesh convergent solutions. We apply the proposed method to the particle migration in rotating Couette flow of a Giesekus fluid. We investigate the effect of initial particle positions, the Weissenberg number, the mobility parameter of the Giesekus model and the particle size on the particle migration. We also show two-particle interactions in confined shear flow of a viscoelastic fluid. We find three different regimes of particle motions according to initial separations of particles.  相似文献   

16.
17.
Fiber suspension flow and fiber orientation through a parallel-plate channel were numerically simulated for fiber suspensions including continuously dispersed aspect ratios from 10 to 50. In the simulations, both the fiber–fiber and fiber–wall interactions were not taken into account. A statistical scheme that proceeds by evaluating the orientation evolution of a large number of fibers from the solution of the Jeffery equation along the streamlines was confirmed to be a very useful and feasible method to accurately analyze the orientation distribution of fibers with continuously dispersed aspect ratios. For monodisperse suspensions with small-aspect-ratio fibers, flip-over or oscillation phenomenon of the orientation ellipsoid caused the wavy patterns of the velocity profile and the streamlines as well as the abrupt and complex variation of the shear stress and the normal stress difference near the channel wall as proven in one of our former works. On the other hand, continuous dispersions containing from small- to large-aspect-ratio fibers were able to induce smoother evolutions of the fiber orientation and the flow kinematics. In the processing of fiber composites, the length of suspended fibers is always continuously distributed because of fiber breakage during processing; thus, the smooth evolutions of the flow kinematics and the stress distribution can be attained.This paper was presented at the Annual Meeting of the European Society of Rheology, Grenoble, April 2005.  相似文献   

18.
19.
20.
Non-spherical micron and nano-sized particles and their composites have become essential in select application areas of optics,wear resistance,personnel protection,chemical mechanical polishing,and biomedicine.In this paper,the synthesis of composite and ceramic non-spherical particles using stop flow lithography is reported.Precursor suspensions of poly(ethylene glycol) diacrylate,2-hydroxy-2-methylpropiophenone and SiO_2 or Al_2O_3 are prepared.The precursor suspension flows through a microfluidic device mounted on an upright microscope and is polymerized in an automated process.A photomask patterned with transparent geometric features,which define the cross-sectional shapes of the particles,masks the UV light to synthesize micron sized particles.Particles with axial dimensions ranging from 35 to 167 μm were synthesized.Control of device channel depth and objective lens magnification enables the manipulation of the particle size.Composite particles in triangular,square,pentagonal,hexagonal,and circular cross sections were synthesized.Subsequently,the transformation of the composite particles into the corresponding metal oxide particles was achieved through polymer burn-off and sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号