首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a theoretical study on how many-body effects can affect the spin-splitting of a two-dimensional electron gas in the presence of the Rashba spin–orbit interaction. The standard Hartree–Fock approximation and Green's function approach are employed to calculate the energy spectrum and density of states of a spin-split two-dimensional electron gas (2DEG). We find that the presence of the exchange interaction can enhance significantly the spin-splitting of a 2DEG on top of the Rashba effect. The physical reasons behind this important phenomenon are discussed.  相似文献   

2.
We investigate numerically the spin polarization of the current in the presence of Rashba spin–orbit interaction (RSOI) in a 3-terminal conductor. We use equation-of-motion method to simulate the time evolution of the wave packet and focus on single-channel transport. A T-shaped conductor with uniform RSOI proposed by Kiselev and Kim and a Y-shaped conductor with nonuniform RSOI are considered. In the T-shaped conductor, the strength of RSOI is assumed to be uniform. We have found that the spin polarization becomes nearly 100% with little loss of conductance for sufficiently strong spin–orbit coupling. This is due to the spin-dependent group velocity of electrons at the junction which causes the spin separation. In the Y-shaped conductor, the strength of RSOI is modulated perpendicular to the charge current. A spatial gradient of effective magnetic field due to the nonuniform RSOI causes the Stern–Gerlach type spin separation. The direction of the polarization is perpendicular to the current and parallel to the spatial gradient. Again almost 100% spin polarization can be realized by this spin separation.  相似文献   

3.
We measured gate voltage-dependent Aharonov–Bohm oscillations in an InGaAs-based two-dimensional electron gas ring with a gate on top of one of the branches. After ensemble averaging, the h/e oscillation spectrum showed smooth oscillatory behavior as a function of the gate voltage. This could be a manifestation of the spin–orbit interaction induced interference.  相似文献   

4.
5.
Using the Landauer–Büttiker formula with the transfer matrix technique, we develop a formalism of the ballistic spin-dependent electron transport in the multi-lead Rashba rings. We give analytic formulas of the total conductance Gj, spin-σ conductance and spin polarization Pj of each outgoing lead j, and their resonant and antiresonant conditions. Analytic studying with numerical investigating Rashba rings with several symmetric and asymmetric leads, we find that Gj, and Pj oscillate with the incoming electron energy and the spin–orbit interaction (SOI) strength, and their antiresonances depend on the incoming electron energy, the SOI strength and the outgoing-lead angle with the incoming lead. For the symmetric-lead rings, Gj, and Pj have some symmetries, , and Pj = −PNj for symmetric leads, j and Nj, where the angles between the symmetric outgoing leads j and Nj and the incoming lead are γNj = 2πγj. The spin polarization of the outgoing lead with γj = π is exactly zero for even-N-symmetric-lead rings. These symmetries originate from the lead symmetry and time reversal invariance. For asymmetry-lead rings these symmetries vanish.  相似文献   

6.
The application of quantum dots in advanced technology goes beyond doubt. Here, based on an analytical methodology, investigate a three-electron-quantum dot in the presence of Rashba spin–orbit interaction under cylindrical symmetry. Both eigenvalues and eigenfunctions of the system are reported and the problem is numerically discussed.  相似文献   

7.
    
Electronic and spin transport properties of a benzene molecule connected to semi‐infinite armchair and zigzag graphene nano‐ribbon leads are calculated using non‐equilibrium Green function (NEGF) method at zero bias regime. It is shown that, the molecule is conductive in a specific range of energy for both armchair and zigzag leads. This behavior is similar for both kinds of leads. In presence of Rashba spin–orbit interaction, the molecule shows spin filtering properties for both kinds of leads but these properties are not similar for armchair and zigzag leads. Also, a spin‐polarized current is seen in the molecule connected to zigzag leads. The benzene molecule with Rashba spin–orbit interaction can be considered as an excellent candidate for molecular electronic and spintronic devices which can have very small dimensions relative to the conventional semiconductor devices.  相似文献   

8.
We study possible pairing symmetries of non-centrosymmetric superconductors in the Hubbard model with the Rashba-type spin–orbit interaction (RSOI). Because of the breakdown of space inversion symmetry due to RSOI, a mixture of pairing states with different symmetries can emerge. We find that the RSOI mixes not only the spin-singlet even-parity pairing and spin-triplet odd-parity pairings with even-frequency symmetry, but it also mixes the spin-singlet odd-parity pairing and spin-triplet even-parity pairings with odd-frequency symmetry.  相似文献   

9.
A spin accumulation effect (SAE) is induced in a semiconductor nanoring with Rashba spin orbit interaction and pierced by a magnetic flux. We show that when the sample is not perfectly symmetric, the profile of the SAE can be highly inhomogeneous along specific orientations. In particular, we analyze the anisotropy generated in the angular profile by a finite eccentricity. We discuss the feasibility of detecting the effect with usual magneto optical techniques for a number of electrons and values of magnetic fluxes experimentally accessible.  相似文献   

10.
We examine how the Rashba spin-orbit interaction (SOI) affects the fast-electron optical spectrum of a two-dimensional electron gas (2DEG). It is found that for a spin-split 2DEG, the spectrum of optical absorption is mainly induced by plasmon excitation via inter-SO electronic transition. From the width and position of the spectrum, the Rashba spin-splitting can be identified optically and, therefore, important spintronic properties can be measured though optical experiments.  相似文献   

11.
We analytically obtained the Schmidt decomposition of the entangled state between the pseudo spin and the true spin in graphene with Rashba spin–orbit coupling. The entangled state has the standard form of the Bell state, where the SU(2) spin symmetry is broken. These states can be explicitly expressed as the superposition of two nonorthogonal, but mirror symmetrical spin states entangled with the pseudo spin states. Because of the closely locking between the pseudo spin and the true spin, it is found that the orbit curve in the spin-polarization parameter space for the fixed equi-energy contour around Dirac points has the same shape as the δk-contour. Due to the spin–orbit coupling that cause the topological transition in the local geometry of the dispersion relation, the new equi-energy contours around the new emergent Dirac Points can be obtained by squeezing the one around the original Dirac point. The spin texture in the momentum space around the Dirac points is analyzed under the Rashba spin–orbit interaction and it is found that the orientation of the spin polarization at each crystal momentum k is independent of the Rashba coupling strength.  相似文献   

12.
    
Spin–charge separation is known to be broken in many physically interesting one‐dimensional (1D) and quasi‐1D systems with spin–orbit interaction because of which spin and charge degrees of freedom are mixed in collective excitations. Mixed spin–charge modes carry an electric charge and therefore can be investigated by electrical means. We explore this possibility by studying the dynamic conductance of a 1D electron system with image‐potential‐induced spin–orbit interaction. The real part of the admittance reveals an oscillatory behavior versus frequency that reflects the collective excitation resonances for both modes at their respective transit frequencies. By analyzing the frequency dependence of the conductance the mode velocities can be found and their spin–charge structure can be determined quantitatively.  相似文献   

13.
14.
《Physics letters. A》2014,378(30-31):1985-1991
In the present article we report the dynamics of electronic spin–subbands, as well as subband–subband, hybrid entanglements in a two-dimensional anisotropic quantum dot. The dot is under the influence of Rashba effect and an external magnetic field. To study the hybrid entanglements, we partition the system into two categories in which either spatial degrees of freedom, subbands, entangle with the spin or the subbands become entangled amongst themselves. For the first case we calculate the von Neumann entropy, while for the latter the negativity is calculated. Our calculations show that for both cases information is periodically distributed between the corresponding subspaces. Effects of Rashba parameter and magnetic field on the characteristics of such oscillatory behavior are also discussed. For spin–subband entanglement the oscillations include dips, surrounded by plateaus of maximal entanglement. The subband–subband entanglement shows vanishingly small plateaus. The duration of plateaus is controlled by Rashba coupling and the external field.  相似文献   

15.
The influence of an in-plane electric and out-of-plane magnetic field on the electronic light scattering is calculated for a lateral semiconductor superlattice within Rashba spin–orbit interaction. Sharp resonances are predicted to appear when the Raman shift matches one frequency of the Wannier–Stark ladder. The spin–orbit interaction gives rise to a dispersion of the exact one-particle eigenstates and an associated finite width of the Raman line, which can be tuned by the electric and magnetic field. When the Bloch frequency is located in this Raman line, a Fano resonance is observed.  相似文献   

16.
    
Spin current and spin accumulation of a finite width quantum ring (QR) in the presence of a homogeneous perpendicular magnetic field and Rashba spin‐orbit coupling have been investigated. A non‐equilibrium Green's function (NEGF) approach has been followed in coherent regime. Numerical results show that spatial magnetization of the transport electrons oscillates throughout the QR and the spin current and spin accumulation can be controlled by the Rashba coupling, bias voltage, and magnetic field.  相似文献   

17.
We investigate the magnetocapacitance of the two-dimensional electron gas (2DEG) embedded in diluted magnetic semiconductors in the presence of Rashba spin–orbit interaction (SOI). We present calculations on the energy spectrum and density of states and show that the tunable spin–orbit coupling and the enhanced Zeeman splitting have a strong effect on the magnetocapacitance of the structure. In the presence of Rashba SOI, a typical beating pattern with well defined node-positions in the oscillating capacitance is observed. A simple relation that predicts the positions of nodes in the beating patterns is obtained. The interplay between the total Zeeman splitting (including the s–d exchange interaction) and the Rashba SOI is discussed.  相似文献   

18.
    
Magnetoconductance of carbon nanotubes (CNTs) is investigated. We clearly show that a semiconducting CNT can be converted into a metallic one, or vice versa, with the application of a large magnetic field parallel to the tube axis, providing a consistent confirmation of the Aharonov–Bohm (AB) effect on the band structure of CNTs. We also demonstrate that magnetic‐field values where the semiconductor‐to‐metal transition occurs can be tuned by mechanical strain. Combined control of both the strain and the AB effect may open up new possibilities for CNT devices. In addition, we propose an idea to manipulate spin‐split subbands of CNTs, resulting from spin–orbit interaction (SOI), by using the magnetic field to generate sizeable spin‐polarized currents.

  相似文献   


19.
文中利用fluent软件对新型径轴向混合填充式回热器内工质稳态流动和交变流动进行数值模拟,模拟结果显示,稳态流动时工质进口和径轴向填料的交界处工质压降较大;径向填料内工质流动分布均匀性优于轴向填料,但流动阻力较大.对交变流动模拟可以发现,在整个交变过程中填料丝两边区域流速大小和方向变化最为明显.  相似文献   

20.
Magnetotransport through one or several quasi-one-dimensional rings, in the presence of the Rashba (RSOI) and Dresselhaus (DSOI) terms of the spin–orbit interaction (SOI) and of a magnetic field B, is investigated. The RSOI field and an effective DSOI field are taken as ER=ER(sinγ1er+cosγ1ez) and ED=ED(sinγ2er+cosγ2ez), their strengths are denoted by α and β, respectively. The exact one-electron eigenvalues and eigenfunctions are obtained and used to evaluate the transmission as a function of α, β, and of the angles γ1,γ2. Because the RSOI term couples the electronic orbit (along the θ direction) with the Pauli matrices σz and σr while the DSOI term couples it with σθ, they affect the electronic spin transport through a ring in distinctly different ways. The resulting transmission shows a considerable structure as a function of the angles γ1 or γ2. The same holds for the transmission, versus α or β, with the SOI present only in one arm of the ring and for that through two rings with the same or different radii. Various results of the literature, valid for β=0, are readily recovered. For weak magnetic fields the influence of the Zeeman term on the transmission, assessed by perturbation theory, is negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号