首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mixed-ring beryllocene Be(C5Me5)(C5Me4H), that contains eta 5-C5Me5 and eta 1-C5Me4H rings, the latter bonded to the metal through the CH carbon atom (X-ray crystal structure) reacts at room temperature with CNXyl (Xyl = C6H3-2,6-Me2) to give an iminoacyl product, Be(eta 5-C5Me4H)[C(NXyl)C5Me5] derived from the inverted beryllocene structure Be (eta 5-C5Me4H)(eta 1-C5Me5).  相似文献   

2.
The beryllocenes [Be(C(5)Me(4)H)(2)] (1), [Be(C(5)Me(5))(2)] (2), and [Be(C(5)Me(5))(C(5)Me(4)H)] (3) have been prepared from BeCl(2) and the appropriate KCp' reagent in toluene/diethyl ether solvent mixtures. The synthesis of 1 is facile (20 degrees C, overnight), but generation of decamethylberyllocene 2 demands high temperatures (ca. 115 degrees C) and extended reaction times (3-4 days). The mixed-ring beryllocene 3 is obtained when the known [(eta(5)-C(5)Me(5))BeCl] is allowed to react with K[C(5)Me(4)H], once more under somewhat forcing conditions (115 degrees C, 36 h). The structures of the three metallocenes have been determined by low-temperature X-ray studies. Both 1 and 3 present eta5/eta1 geometries of the slip-sandwich type, whereas 2 exhibits an almost regular, ferrocene-like, sandwich structure. In the mixed-ring compound 3, C(5)Me(5) is centrally bound to beryllium and the eta(1)-C(5)Me(4)H ring bonds to the metal through the unique CH carbon atom. This is also the binding mode of the eta(1)-ring of 1. To analyze the nature of the bonding in these molecules, theoretical calculations at different levels of theory have been performed on compounds 2 and 3, and a comparison with the bonding in [Be(C(5)H(5))(2)] has been made. As for the latter molecule, energy differences between the eta5/eta5 and the eta5/eta1 structures of 2 are very small, being of the order of a few kcal mol(-1). Constrained space orbital variations (CSOV) calculations show that the covalent character in the bonding is larger for [Be(C(5)Me(5))(2)] than for [Be(C(5)H(5))(2)] due to larger charge delocalization and to increased polarizability of the C(5)Me(5) fragment.  相似文献   

3.
The ethene derivatives [(eta(5)-C(5)R(5))RuX(C(2)H(4))(PPh(3))] with R=H and Me, which have been prepared from the eta(3)-allylic compounds [(eta(5)-C(5)R(5))Ru(eta(3)-2-MeC(3)H(4))(PPh(3))] (1, 2) and acids HX under an ethene atmosphere, are excellent starting materials for the synthesis of a series of new halfsandwich-type ruthenium(II) complexes. The olefinic ligand is replaced not only by CO and pyridine, but also by internal and terminal alkynes to give (for X=Cl) alkyne, vinylidene, and allene compounds of the general composition [(eta(5)-C(5)R(5))RuCl(L)(PPh(3))] with L=C(2)(CO(2)Me)(2), Me(3)SiC(2)CO(2)Et, C=CHCO(2)R, and C(3)H(4). The allenylidene complex [(eta(5)-C(5)H(5))RuCl(=C=C=CPh(2))(PPh(3))] is directly accessible from 1 (R=H) in two steps with the propargylic alcohol HC triple bond CC(OH)Ph(2) as the precursor. The reactions of the ethene derivatives [(eta(5)-C(5)H(5))RuX(C(2)H(4))(PPh(3))] (X=Cl, CF(3)CO(2)) with diazo compounds RR'CN(2) yield the corresponding carbene complexes [(eta(5)-C(5)R(5))RuX(=CRR')(PPh(3))], while with ethyl diazoacetate (for X=Cl) the diethyl maleate compound [(eta(5)-C(5)H(5))RuCl[eta(2)-Z-C(2)H(2)(CO(2)Et)(2)](PPh(3))] is obtained. Halfsandwich-type ruthenium(II) complexes [(eta(5)-C(5)R(5))RuCl(=CHR')(PPh(3))] with secondary carbenes as ligands, as well as cationic species [(eta(5)-C(5)H(5))Ru(=CPh(2))(L)(PPh(3))]X with L=CO and CNtBu and X=AlCl(4) and PF(6), have also been prepared. The neutral compounds [(eta(5)-C(5)H(5))RuCl(=CRR')(PPh(3))] react with phenyllithium, methyllithium, and the vinyl Grignard reagent CH(2)=CHMgBr by displacement of the chloride and subsequent C-C coupling to generate halfsandwich-type ruthenium(II) complexes with eta(3)-benzyl, eta(3)-allyl, and substituted olefins as ligands. Protolytic cleavage of the metal-allylic bond in [(eta(5)-C(5)H(5))Ru(eta(3)-CH(2)CHCR(2))(PPh(3))] with acetic acid affords the corresponding olefins R(2)C=CHCH(3). The by-product of this process is the acetato derivative [(eta(5)-C(5)H(5))Ru(kappa(2)-O(2)CCH(3))(PPh(3))], which can be reconverted to the carbene complexes [(eta(5)-C(5)H(5))RuCl(=CR(2))(PPh(3))] in a one-pot reaction with R(2)CN(2) and Et(3)NHCl.  相似文献   

4.
The sterically crowded (C(5)Me(5))(3)U complex reacts with KC(8) or K/(18-crown-6) in benzene to form [(C(5)Me(5))(2)U](2)(mu-eta(6):eta(6)-C(6)H(6)), 1, and KC(5)Me(5). These reactions suggested that (C(5)Me(5))(3)U could be susceptible to (C(5)Me(5))(1-) substitution by benzene anions via ionic salt metathesis. To test this idea in the synthesis of a more conventional product, (C(5)Me(5))(3)U was treated with KN(SiMe(3))(2) to form (C(5)Me(5))(2)U[N(SiMe(3))(2)] and KC(5)Me(5). 1 has long U-C(C(5)Me(5)) bond distances comparable to (C(5)Me(5))(3)U, and it too is susceptible to (C(5)Me(5))(1-) substitution via ionic metathesis: 1 reacts with KN(SiMe(3))(2) to make its amide-substituted analogue [[(Me(3)Si)(2)N](C(5)Me(5))U](2)(mu-eta(6):eta(6)-C(6)H(6)), 2. Complexes 1 and 2 have nonplanar C(6)H(6)-derived ligands sandwiched between the two uranium ions. 1 and 2 were examined by reactivity studies, electronic absorption spectroscopy, and density functional theory calculations. [(C(5)Me(5))(2)U](2)(mu-eta(6):eta(6)-C(6)H(6)) functions as a six-electron reductant in its reaction with 3 equiv of cyclooctatetraene to form [(C(5)Me(5))(C(8)H(8))U](2)(mu-eta(3):eta(3)-C(8)H(8)), (C(5)Me(5))(2), and benzene. This multielectron transformation can be formally attributed to three different sources: two electrons from two U(III) centers, two electrons from sterically induced reduction by two (C(5)Me(5))(1-) ligands, and two electrons from a bridging (C(6)H(6))(2-) moiety.  相似文献   

5.
The reaction of [(eta(5)-C(5)Me(5))ZrF(3)] and [(eta(5)-C(5)Me(5))HfF(3)] with Me(3)SiOCOCF(3) yields the dinuclear complexes [{(eta(5)-C(5)Me(5))ZrF(OCOCF(3))(2)}(2)] (1) and [{(eta(5)-C(5)Me(5))HfF(OCOCF(3))(2)}(2)] (2), regardless of the molar ratio employed. [(eta(5)-C(5)Me(5))(2)ZrF(2)] reacts with 1 and 2 equiv of Me(3)SiOCOCF(3) to form the mononuclear compounds [(eta(5)-C(5)Me(5))(2)Zr(OCOCF(3))(2)] (3) and [(eta(5)-C(5)Me(5))(2)ZrF(OCOCF(3))] (4), respectively. The molecular structures of 1 and 3 have been determined by single-crystal X-ray analysis: 1, triclinic, P&onemacr;, a = 9.508(3) ?, b = 11.002(4) ?, c = 17.528(3) ?, alpha = 78.55(4), beta = 76.80(2), gamma = 87.51(2) degrees, V = 1750(1) ?(3), Z = 2, R = 0.0378; 3, monoclinic, C2/c, a = 18.553(4) ?, b = 9.110(2) ?, c = 16.323(3) ?, beta = 114.88(3) degrees, V = 2503(1) ?(3), Z = 4, R = 0.0457. Compound 1 shows bridging bidentate and chelating carboxylate ligands as well as bridging fluorine atoms. The zirconium atoms are seven coordinated and have an 18-electron configuration. X-ray studies of 3 reveal two structural components where the carboxylate ligands coordinate in a monodentate (major component) and a chelating manner (minor component).  相似文献   

6.
Cationic nitrile complexes and neutral halide and cyanide complexes, with the general formula [MnL1L2(NO)(eta-C5H4Me)]z, undergo one-electron oxidation at a Pt electrode in CH2Cl2. Linear plots of oxidation potential, Eo', vs. nu(NO) or the Lever parameters, EL, for L1 and L2, allow Eo' to be estimated for unknown analogues. In the presence of TlPF6, [MnIL'(NO)(eta-C5H4Me)] reacts with [Mn(CN)L(NO)(eta-C5H4Me)] to give [(eta5-C5H4Me)(ON)LMn(mu-CN)MnL'(NO)(eta5-C5H4Me)][PF6] which undergoes two reversible one-electron oxidations; DeltaE, the difference between the potentials for the two processes, differs significantly for stable cyanide-bridged linkage isomers. Novel pentametallic complexes such as [Mn[(mu-NC)Mn(CNBut)(NO)(eta5-C5H4Me)]4(OEt2)][PF6]2 and [Mn[(mu-NC)Mn(CNXyl)(NO)(eta5-C5H4Me)]4(NO3-O,O')][PF6], containing a trigonal bipyramidal and a distorted octahedral Mn(II) centre, respectively, result either from slow decomposition of the binuclear cyanide-bridged species or from the reaction of anhydrous MnI2 with four equivalents of [Mn(CN)L(NO)(eta5-C5H4Me)] in the presence of TlPF6.  相似文献   

7.
(C(5)Me(5))(2)Y(eta(3)-C(3)H(5)) reacts with 9-borabicyclo[3.3.1]nonane, 9-BBN, to form single crystals containing both a borane-substituted allyl complex, (C(5)Me(5))(2)Y[eta(3)-C(3)H(4)(BC(8)H(14))], and a borohydride, (C(5)Me(5))(2)Y(micro-H)(2)BC(8)H(14), that can be synthesized directly from 9-BBN and the yttrium hydride, [(C(5)Me(5))(2)YH](x).  相似文献   

8.
Treatment of [[Ti(eta(5)-C(5)Me(5))(micro-NH)](3)(micro(3)-N)] (1) with the imido complexes [Ti(NAr)Cl(2)(py)(3)] (Ar=2,4,6-C(6)H(2)Me(3)) and [Ti(NtBu)Cl(2)(py)(3)] in toluene affords the single azatitanocubanes [[Cl(2)(ArN)Ti]( micro(3)-NH)(3)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (2.C(7)H(8)) and [[Cl(2)Ti](micro(3)-N)(2)(micro(3)-NH)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (3), respectively. Similar reactions of complex 1 with the niobium and tantalum imido derivatives [[M(NtBu)(NHtBu)Cl(2)(NH(2)tBu)](2)] (M=Nb, Ta) in toluene give the single azaheterometallocubanes [[Cl(2)(tBuN)M](micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (M=Nb (4), Ta (5)), both complexes react with 2,4,6-trimethylaniline to yield the analogous species [[Cl(2)(ArN)M](micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (Ar=2,4,6-C(6)H(2)Me(3), M=Nb (6.C(7)H(8)), Ta (7.C(7)H(8))). Also the azaheterodicubanes [M[micro(3)-N)(2)(micro(3)-NH)](2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)](2)].2C(7)H(8) [M=Ti (8.2C(7)H(8)), Zr (9.2C(7)H(8))], and [M[(micro(3)-N)(5)(micro(3)-NH)][Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)](2)].2 C(7)H(8) (Nb (10.2C(7)H(8)), Ta (11.2C(7)H(8))) were prepared from 1 and the homoleptic dimethylamido complex [M(NMe(2))(x)] (x=4, M=Ti, Zr; x=5, M=Nb, Ta) in toluene at 150 degrees C. X-ray crystal structure determinations were performed for 6 and 10, which revealed a cube- and double-cube-type core, respectively. For complexes 2 and 4-7 we observed and studied by DNMR a rotation or trigonal-twist of the organometallic ligands [[Ti(eta(5)-C(5)Me(5))(micro-NH)](3)(micro(3)-N)] (1) and [(micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]](1-). Density functional theory calculations were carried out on model complexes of 2, 3, and 8 to establish and understand their structures.  相似文献   

9.
Cationic half-sandwich complexes containing the [(eta(5)-C(5)Me(5))M(Diphos*)] moiety (M=Rh, Ir; Diphos*=chiral diphosphine ligand) catalyze the cycloaddition of the nitrone 3,4-dihydroisoquinoline N-oxide (A) to methacrylonitrile (B) with excellent regio and endo selectivity and low-to-moderate enantioselectivity. The most active and selective catalyst, (S(Rh),R(C))-[(eta(5)-C(5)Me(5))Rh{(R)-Prophos)} (NC(Me)C==CH(2))](SbF(6))(2), has been isolated and fully characterized including the determination of the molecular structure by X-ray diffraction. The R-at-metal epimers of the complexes [(eta(5)-C(5)Me(5))M{(R)-Prophos)}(NC(Me)C==CH(2))](SbF(6))(2) (M=Rh, Ir) isomerize to the corresponding S-at-metal diastereomers. The stoichiometric cycloaddition of A with B is catalyzed by diastereopure (S(M),R(C))-[(eta(5)-C(5)Me(5))M{(R)-Prophos)}(NC(Me)C==CH(2))](SbF(6))(2) with perfect regio and endo selectivity and very good (up to 95 %) ee. The catalyst can be recycled up to nine times without significant loss of either activity or selectivity.  相似文献   

10.
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C(5)R'(4)(CH(2))(2)PR(2)] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C(5)R'(4)(C(2)H(4)) with LiPR(2). C(5)Et(4)HSiMe(2)CH(2)PMe(2), was prepared from reaction of Li[C(5)Et(4)] with Me(2)SiCl(2) followed by Me(2)PCH(2)Li. The lithium salts were reacted with [RhCl(CO)(2)](2), [IrCl(CO)(3)] or [Co(2)(CO)(8)] to give [M(C(5)R'(4)(CH(2))(2)PR(2))(CO)] (M = Rh, R = Et, R' = H or Me, R = Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (Cp' = C(5)Me(4)), the most electron rich of the complexes. [Rh(C(5)Et(4)SiMe(2)CH(2)PMe(2))(CO)] may be a dimer. [Co(2)(CO)(8)] reacts with C(5)H(5)(CH(2))(2)PEt(2) or C(5)Et(4)HSiMe(2)CH(2)PMe(2) (L) to give binuclear complexes of the form [Co(2)(CO)(6)L(2)] with almost linear PCoCoP skeletons. [Rh(Cp'(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH(2))(2)PPh(2))(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI(2)(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH(2))(2)PEt(2))(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt(3))(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH(2))(2)PEt(2))I(2)], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH(2))(2)PEt(2))(CO)]. Neither of [M(Cp'(CH(2))(2)PEt(2))(CO)] (M = Co or Ir) was active for methanol carbonylation under these conditions, nor under many other conditions investigated, except that [Ir(Cp'(CH(2))(2)PEt(2))(CO)] showed some activity at higher temperature (190 degrees C), probably as a result of degradation to [IrI(2)(CO)(2)](-). [M(Cp'(CH(2))(2)PEt(2))(CO)] react with MeI to give [M(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] (M = Co or Rh) or [Ir(Cp'(CH(2))(2)PEt(2))Me(CO)]I. The rates of oxidative addition of MeI to [Rh(C(5)H(4)(CH(2))(2)PEt(2))(CO)] and [Rh(Cp'(CH(2))(2)PPh(2))(CO)] are 62 and 1770 times faster than to [Cp*Rh(CO)(2)]. Methyl migration is slower, however. High pressure NMR studies show that [Co(Cp'(CH(2))(2)PEt(2))(CO)] and [Cp*Rh(PEt(3))(CO)] are unstable towards phosphine oxidation and/or quaternisation under methanol carbonylation conditions, but that [Rh(Cp'(CH(2))(2)PEt(2))(CO)] does not exhibit phosphine degradation, eventually producing inactive [Rh(Cp'(CH(2))(2)PEt(2))I(2)] at least under conditions of poor gas mixing. The observation of [Rh(Cp'(CH(2))(2)PEt(2))(C(O)Me)I] under methanol carbonylation conditions suggests that the rhodium centre has become so electron rich that reductive elimination of ethanoyl iodide has become rate determining for methanol carbonylation. In addition to the high electron density at rhodium.  相似文献   

11.
Attempts to prepare mixed-ligand zinc-zinc-bonded compounds that contain bulky C(5)Me(5) and terphenyl groups, [Zn(2)(C(5)Me(5))(Ar')], lead to disproportionation. The resulting half-sandwich Zn(II) complexes [(η(5)-C(5)Me(5))ZnAr'] (Ar' = 2,6-(2,6-(i)Pr(2)C(6)H(3))(2)-C(6)H(3), 2; 2,6-(2,6-Me(2)C(6)H(3))(2)-C(6)H(3), 3) can also be obtained from the reaction of [Zn(C(5)Me(5))(2)] with the corresponding LiAr'. In the presence of pyr-py (4-pyrrolidinopyridine) or DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), [Zn(2)(η(5)-C(5)Me(5))(2)] reacts with C(5)Me(5)OH to afford the tetrametallic complexes [Zn(2)(η(5)-C(5)Me(5))L(μ-OC(5)Me(5))](2) (L = pyr-py, 6; DBU, 8), respectively. The bulkier terphenyloxide Ar(Mes)O(-) group (Ar(Mes) = 2,6-(2,4,6-Me(3)C(6)H(2))(2)-C(6)H(3)) gives instead the dimetallic compound [Zn(2)(η(5)-C(5)Me(5))(OAr(Mes))(pyr-py)(2)], 7, that features a terminal Zn-OAr(Mes) bond. DFT calculations on models of 6-8 and also on the Zn-Zn-bonded complexes [Zn(2)(η(5)-C(5)H(5))(OC(5)H(5))(py)(2)] and [(η(5)-C(5)H(5))ZnZn(py)(3)](+) have been performed and reveal the nonsymmetric nature of the Zn-Zn bond with lower charge and higher participation of the s orbital of the zinc atom coordinated to the cyclopentadienyl ligand with respect to the metal within the pseudo-ZnL(3) fragment. Cyclic voltammetric studies on [Zn(2)(η(5)-C(5)Me(5))(2)] have been also carried out and the results compared with the behavior of [Zn(C(5)Me(5))(2)] and related magnesium and calcium metallocenes.  相似文献   

12.
Low temperature in situ UV irradiation of [(eta(5)-C(5)H(5))Co(C(2)H(4))(2)] in the presence of silanes enables the characterisation of unstable fluxional Co(III) silyl hydride complexes [(eta(5)-C(5)H(5))Co(SiR(3))(H)(C(2)H(4))] (SiR(3) = SiEt(3), SiMe(3) or SiHEt(2)) by NMR spectroscopy; the reaction of [Co(eta(5)-C(5)H(5))(C(2)H(4))(2)] with HSiR(3) proceeds thermally to reach an equilibrium when SiR(3) = Si(OMe)(3) or SiClMePh.  相似文献   

13.
The chiral monodentate phosphine PhP[(C(5)Me(4))(2)] is readily obtained by oxidation of the lithium complex Li(2)[PhP(C(5)Me(4))(2)] with I(2), which couples the two cyclopentadienyl groups to form a five-membered heterocyclic ring. The steric and electronic properties of PhP[(C(5)Me(4))(2)] have been evaluated by X-ray diffraction and IR spectroscopic studies on a variety of derivatives, including Ph[(C(5)Me(4))(2)]PE (E = S, Se), Cp*MCl(4)[P[(C(5)Me(4))(2)]Ph] (M = Mo, Ta), Ir[P[(C(5)Me(4))(2)]Ph](2)(CO)Cl, and CpFe(CO)[PhP[(C(5)Me(4))(2)]]Me. For comparison purposes, derivatives of the related phospholane ligand PhP[Me(2)C(4)H(6)] have also been investigated, including Ph[Me(2)C(4)H(6)]PS, Ir[Ph[Me(2)C(4)H(6)]](2)(CO)Cl, Ir[Ph[Me(2)C(4)H(6)]](2)(CO)Me, Ir[PPh[Me(2)C(4)H(6)]](COD)(Cl), and Pd[P[Me(2)C(4)H(6)]Ph][eta(2)-C(6)H(4)C(H)(Me)NMe(2)]Cl. The steric and electronic properties of PhP[(C(5)Me(4))(2)] are determined to be intermediate between those of PPh(2)Me and PPh(3). Thus, the crystallographic cone angles increase in the sequence PPh(2)Me (134.5 degrees) < PhP[(C(5)Me(4))(2)] (140.2 degrees) < PPh(3) (148.2 degrees), while the electron donating abilities decrease in the sequence PPh(2)Me > PhP[(C(5)Me(4))(2)] > PPh(3). Finally, PhP[(C(5)Me(4))(2)] has a smaller cone angle and is less electron donating than the structurally similar phosphine, PhP[Me(2)C(4)H(6)].  相似文献   

14.
The reactivities of the highly electrophilic boranes ClB(C(6)F(5))(2) (1) and [HB(C(6)F(5))(2)](n) (2) towards a range of organometallic reagents featuring metals from Groups 7-10 have been investigated. Salt elimination chemistry is observed 1 between and the nucleophilic anions eta(5)-C(5)R(5))Fe(CO)(2)](-)(R = H or Me) and [Mn(CO)(5)](-), leading to the generation of the novel boryl complexes (eta(5)-C(5)R(5))Fe(CO)(2)B(C(6)F(5))(2)[R = H (3) or Me (4)] and (OC)(5)MnB(C(6)F(5))(2) (5). Such systems are designed to probe the extent to which the strongly sigma-donor boryl ligand can also act as a pi-acceptor; a variety of spectroscopic, structural and computational probes imply that even with such strongly electron withdrawing boryl substituents, the pi component of the metal-boron linkage is a relatively minor one. Similar reactivity is observed towards the hydridomanganese anion [(eta(5)-C(5)H(4)Me)Mn(CO)(2)H](-), generating a thermally labile product identified spectroscopically as (eta(5)-C(5)H(4)Me)Mn(CO)(2)(H)B(C(6)F(5))(2) (6). Boranes 1 and 2 display different patterns of reactivity towards low-valent platinum and rhodium complexes than those demonstrated previously for less electrophilic reagents. Thus, reaction of 1 with (Ph(3)P)(2)Pt(H(2)C=CH(2)) ultimately generates EtB(C(6)F(5))(2) (10) as the major boron-containing product, together with cis-(Ph(3)P)(2)PtCl(2) and trans-(Ph(3)P)(2)Pt(C(6)F(5))Cl (9). The cationic platinum hydride [(Ph(3)P)(3)PtH](+) is identified as an intermediate in the reaction pathway. Reaction of with [(Ph(3)P)(2)Rh(mu-Cl)](2), in toluene on the other hand, appears to proceed via ligand abstraction with both Ph(3)P.HB(C(6)F(5))(2) (11) and the arene rhodium(I) cation [(Ph(3)P)(2)Rh(eta(6)-C(6)H(5)Me)](+) (14) ultimately being formed.  相似文献   

15.
The 47, 49Ti chemical shifts, resonance line half-widths (Deltanu1/2) and energies of the first electronic charge-transfer transitions (lambdamax1.CT) of Cp'TiX3, where Cp' = eta5-C5H5 (Cp), eta5-C5H4Me (MeCp), eta5-C5HMe4 (Me4Cp), eta5-C5Me5 (Me5Cp), eta5-C5H4SiMe3 (SiCp), eta5-C5H4SnMe3 (SnCp) and eta5-C5H4SiMe2Cl (Si'Cp) and X = Cl, Br, I and OBut, half-sandwich complexes are reported. For the compounds studied, a direct linear relationship between delta(49Ti) and lambdamax1.CT was found.  相似文献   

16.
Treatment of [[Ti(eta(5)-C(5)Me(5))(mu-NH)](3)(mu(3)-N)] with alkali-metal bis(trimethylsilyl)amido derivatives [M[N(SiMe(3))(2)]] in toluene affords edge-linked double-cube nitrido complexes [M(mu(4)-N)(mu(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]](2) (M = Li, Na, K, Rb, Cs) or corner-shared double-cube nitrido complexes [M(mu(3)-N)(mu(3)-NH)(5)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = Na, K, Rb, Cs). Analogous reactions with 1/2 equiv of alkaline-earth bis(trimethylsilyl)amido derivatives [M[N(SiMe(3))(2)](2)(thf)(2)] give corner-shared double-cube nitrido complexes [M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = Mg, Ca, Sr, Ba). If 1 equiv of the group 2 amido reagent is employed, single-cube-type derivatives [(thf)(x)[(Me(3)Si)(2)N]M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]] (M = Mg, x = 0; M = Ca, Sr, Ba, x = 1) can be isolated or identified. The tetrahydrofuran molecules are easily displaced with 4-tert-butylpyridine in toluene, affording the analogous complexes [(tBupy)[(Me(3)Si)(2)N]M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]] (M = Ca, Sr). The X-ray crystal structures of [M(mu(3)-N)(mu(3)-NH)(5)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = K, Rb, Cs) and [M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3))-N)](2)] (M = Ca, Sr) have been determined. The properties and solid-state structures of the azaheterometallocubane complexes bearing alkali and alkaline-earth metals are discussed.  相似文献   

17.
Treatment of the metalloligand [{Ti(eta(5)-C(5)Me(5))(micro-NH)}(3)(micro(3)-N)] with silver(i) trifluoromethanesulfonate in different molar ratios gives the ionic compounds [Ag{(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}(2)][O(3)SCF(3)] and [Ag{(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}][O(3)SCF(3)] or the triangular silver cluster [(CF(3)SO(2)O)(3)Ag(3){(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}(2)] in which each face is capped by a metalloligand.  相似文献   

18.
The reaction of [(eta(6)-arene)RuCl(2)](2) (arene = C(6)Me(6), 1,4-MeC(6)H(4)CHMe(2)) with a large excess of the dianion of bis(2-mercaptoethyl) sulfide, (HSCH(2)CH(2))(2)S, obtained from deprotonation of the dithiol with freshly prepared NaOMe, gives the deep red, monomeric complexes [(eta(6)-arene)Ru(eta(3)-C(4)H(8)S(3))] (arene = C(6)Me(6) (5), 1,4-MeC(6)H(4)CHMe(2) (6)) in which the dianion is bound to the metal atom through one thioether and two thiolate sulfur atoms. Complex 5 reacts with [(eta(6)-C(6)Me(6))RuCl(2)](2) (4) in a 2:1 mole ratio to give a quantitative yield of the chloride salt of a binuclear cation [((eta(6)-C(6)Me(6))Ru)(2)Cl(mu(2)-eta(2):eta(3)-C(4)H(8)S(3))](+) (7) in which the thiolate sulfur atoms of the [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(8)S(3))] group bridge to a (eta(6)-C(6)Me(6))RuCl unit. This compound is also obtained directly from the reaction of 4 with the dithiolate, if the Ru dimer is used in large excess. The binuclear complex [((eta(6)-C(6)Me(6))Ru)(2)(MeCN)(mu(2)-eta(2):eta(3)-C(4)H(8)S(3))](PF(6))(2).MeCN, (9)(PF(6))(2).MeCN, is obtained by treatment of (7)Cl with NH(4)PF(6) in acetonitrile. Protonation of 5 with HCl gave the mono- and diprotonated derivatives viz. [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(9)S(3))]Cl, (8)Cl, and [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(10)S(3))]Cl(2), (10)Cl(2), respectively. The reaction of 5 with methyl iodide gives both the mono- and di-S-methylated derivatives. Treatment of 5 with dibromoalkanes, Br(CH(2))(n)Br (n = 1-5), effects ring closure to give the (eta(6)-C(6)Me(6))Ru dications containing the trithia mesocyclic zS3 (z = 8-12) ligands, isolated as their PF(6) salts. The X-ray crystal structures of 5, 6, the solvates of (7)Cl and (9)(PF(6))(2), and the trithia mesocyclic Ru complexes (eta(6)-C(6)Me(6))Ru(zS3)(PF(6))(2) (z = 8-11) are reported.  相似文献   

19.
Products from the reaction of + nido ten-vertex : nido eight-vertex, B(16)H(20) with [{(IrCl(2)(eta(5)-C(5)Me(5))}(2)] and tmnd show unanticipated rearrangement of the starting {B(16)} skeleton, as exhibited by + nido ten-vertex : nido ten-vertex, [(eta(5)-C(5)Me(5))(2)Ir(2)B(16)H(17)Cl] which has a {B(2)} edge conjunction and by + nido ten-vertex : nido eleven-vertex, [(eta(5)-C(5)Me(5))(2)Ir(2)B(16)H(15)Cl] which has a {B(3)} face conjunction.  相似文献   

20.
The novel bimetallic micro-diboranyl-oxycarbyne bridged platinum-tungsten complex [W{eta(1),micro-CO-B(NMe(2))-B(NMe(2))-(eta(5)-C(5)H(4))}(CO)(2){Pt(PPh(3))(2)}] (W-Pt) () has been synthesised by a two-step reaction, starting from the dilithiated half-sandwich compound Li[W(eta(5)-C(5)H(4)Li)(CO)(3)] () via the ansa-diboranyl-oxycarbyne tungsten complex [W{eta(1)-CO-B(NMe(2))B(NMe(2))(eta(5)-C(5)H(4))}(OC)(2)] () by use of stoichiometric amounts of B(2)(NMe(2))(2)Br(2) and [Pt(eta(2)-C(2)H(4))(PPh(3))(2)], respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号