首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The PCP-Rh(I) complex 1a based on the [1,3-phenylenebis(methylene)]bis(diisopropylphosphine) ligand reacts with [diazo(phenyl)methyl]trimethylstannane (2) at room temperature to give novel pincer-type phenyl(dimethylstannyl)methylene]hydrazinato complex 3a. The reaction sequence involves a unique combination of Sn-C bond cleavage, C-C bond formation, C-H activation and intramolecular deprotonation of a rhodium hydride intermediate, which results in methylene transfer from an SnMe group to the pincer system and PCP-chelate expansion. A methylene-transfer reaction was also demonstrated with tetramethyltin as the methylene source in the presence of KOC(CH(3))(3) at room temperature. The resulting unstable "chelate-expanded" Rh(I) complex [(C(10)H(5)(CH(2)PiPr(2))(2))(CH(2))Rh(L)] (L=N(2), THF; 4a) was isolated as its carbonyl derivative 5a. Heating 4a in benzene yielded an equimolar amount of toluene and 1a, which demonstrates the ability of the Rh(I) pincer complex to extract a methylene group from an unactivated alkyl tin substrate and transfer it, via C-C followed by C-H activation, to an arene. Use of fluorobenzene resulted in formation of fluorotoluene. Catalytic methylene-group transfer mediated by 1a was not possible, because of formation of o-xylylene complex 8 under the reaction conditions. Steric parameters play a decisive role in the reactivity with tin compounds; while iPrP derivative 1 a underwent facile reactions, tBuP complex 1b was inert.  相似文献   

2.
The Vaska-type iridium(I) complex [IrCl(CO){PPh(2)(2-MeC(6)H(4))}(2)] (1), characterized by an X-ray diffraction study, was obtained from iridium(III) chloride hydrate and PPh(2)(2,6-MeRC(6)H(3)) with R=H in DMF, whereas for R=Me, activation of two ortho-methyl groups resulted in the biscyclometalated iridium(III) compound [IrCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)] (2). Conversely, for R=Me the iridium(I) compound [IrCl(CO){PPh(2)(2,6-Me(2)C(6)H(3))}(2)] (3) can be obtained by treatment of [IrCl(COE)(2)](2) (COE=cyclooctene) with carbon monoxide and the phosphane in acetonitrile. Compound 3 in CH(2)Cl(2) undergoes intramolecular C-H oxidative addition, affording the cyclometalated hydride iridium(III) species [IrHCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}] (4). Treatment of 2 with Na[BAr(f) (4)] (Ar(f)=3,5-C(6)H(3)(CF(3))(2)) gives the fluxional cationic 16-electron complex [Ir(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)][BAr(f) (4)] (5), which reversibly reacts with dihydrogen to afford the delta-agostic complex [IrH(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}][BAr(f)(4)] (6), through cleavage of an Ir-C bond. This species can also be formed by treatment of 4 with Na[BAr(f)(4)] or of 2 with Na[BAr(f)(4)] through C-H oxidative addition of one ortho-methyl group, via a transient 14-electron iridium(I) complex. Heating of the coordinatively unsaturated biscyclometalated species 5 in toluene gives the trans-dihydride iridium(III) complex [IrH(2)(CO){PPh(2)(2,6-MeC(6)H(3)CH=CHC(6)H(3)Me-2,6)PPh(2)}][BAr(f) (4)] (7), containing a trans-stilbene-type terdentate ligand, as result of a dehydrogenative carbon-carbon double bond coupling reaction, possibly through an iridium carbene species.  相似文献   

3.
The reaction of [[RhCl(C(8)H(14))(2)](2)] (2) with iPr(2)PCH(2)CH(2)C(6)H(5) (L(1)) led, via the isolated dimer [[RhCl(C(8)H(14))(L(1))](2)] (3), to a mixture of three products 4 a-c, of which the dinuclear complex [[RhCl(L(1))(2)](2)] (4 a) was characterized by Xray crystallography. The mixture of 4a-c reacts with CO, ethene, and phenylacetylene to give the square-planar compounds trans-[RhCl(L)(L(1))(2)] (L=CO (5), C(2)H(4) (6), C=CHPh (9)). The corresponding allenylidene(chloro) complex trans-[RhCl(=C=C=CPh(2))(L(1))(2)] (11), obtained from 4 a-c and HC triple bond CC(OH)Ph(2) via trans-[RhCl[=C=CHC(OH)Ph(2)](L(1))(2)] (10), could be converted stepwise to the related hydroxo, cationic aqua, and cationic acetone derivatives 12-14, respectively. Treatment of 2 and [[RhCl(C(2)H(4))(2)](2)] (7) with two equivalents of tBu(2)PCH(2)CH(2)C(6)H(5) (L(2)) gave the dimers [[RhCl(C(8)H(14))(L(2))](2)] (15) and [[RhCl(C(2)H(4))(L(2))](2)] (16), which both react with L(2) in the molar ratio of 1:2 to afford the five-coordinate aryl(hydrido)rhodium(III) complex [RhHCl(C(6)H(4)CH(2)CH(2)PtBu(2)-kappa(2)C,P)(L(2))] (17) by C-H activation. The course of the reactions of 17 with CO, H(2), PhC triple bond CH, HCl, and AgPF(6), leading to the compounds 19-21, 24, and 25 a, respectively, indicate that the coordinatively unsaturated isomer of 17 with the supposed composition [RhCl(L(2))(2)] is the reactive species. Labeling experiments using D(2), DCl, and PhC triple bond CD support this proposal. With either [Rh(C(8)H(14))(eta(6)-L(2)-kappaP]PF(6) or [Rh(C(2)H(4))(eta(6)-L(n)-kappaP]PF(6) (n=1 and 2) as the starting materials, the corresponding halfsandwich-type complexes 27, 28, and 32 were obtained. The nonchelating counterpart of the dihydrido compound 32 with the composition [RhH(2)(PiPr(3))(eta(6)-C(6)H(6))]PF(6) (35) was prepared stepwise from [Rh(C(2)H(4))(PiPr(3))(eta(6)-C(6)H(6))]PF(6) and H(2) in acetone via the tris(solvato) species [RhH(2)(PiPr(3))(acetone)(3)]PF(6) (34) as intermediate. The synthesis of the bis(chelate) complex [Rh(eta(4)-C(8)H(12))(C(6)H(5)OCH(2)CH(2)PtBu(2)-kappa(2)O,P)]BF(4) (39) is also described. Besides 4 a, the compounds 17, 25 a, and 39 have been characterized by Xray crystal structure analysis.  相似文献   

4.
The diphosphine 2,4,6-(CH(3))(3)-3,5-(iPr(2)PCH(2))(2)C(6)OH (1) reacts with [OsCl(2)(PPh(3))(3)] in presence of an excess of triethylamine to yield the isomeric para-quinone methide derivatives [Os{4-(CH(2))-1-(O)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H)(PPh(3))] (2 and 3), which differ in the positions of the mutually trans hydride and chloride ligands. Complex 2 reacts with CO to afford the dicarbonyl species [Os{1-(O)-2,4,6-(CH(3))(3)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(CO)(2)] (4), which results from hydride insertion into the quinonic double bond. Protonation of 2 and 3 leads to the formation of the methylene arenium derivative [Os{4-(CH(2))-1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H)(PPh(3))][OSO(2)CF(3)] (5 a). The diphosphine 1 reacts with [OsCl(2)(PPh(3))(3)] at 100 degrees C under H(2) to afford [Os{1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H(2))(PPh(3))] (6), a PCP pincer complex resulting formally from C(sp(2))--C(sp(3)) cleavage of the C--CH(3) group in 1. C--C hydrogenolysis resulting in the same complex is achieved by heating 2 under H(2) pressure. Reaction of the diphosphine substrate with [OsCl(2)(PPh(3))(3)] under H(2) at lower temperature allows the observation of a methylene arenium derivative resulting from C--H activation, [Os{4-(CH(2))-1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(2)(H)] (7). This compound reacts with PPh(3) in toluene to afford the ionic derivative [Os{4-(CH(2))-1-(OH)-2,6-(CH(3))(2)-3,5-(iPr(2)PCH(2))(2)C(6)}(Cl)(H)(PPh(3))]Cl (5 b). X-ray diffraction studies have been carried out on compounds 2, 3, 4, 5 b, 6, and 7, which allows the study of the structural variations when going from methylene arenium to quinone methide derivatives.  相似文献   

5.
[Rh(nbd)(PCyp(3))(2)][BAr(F) (4)] (1) [nbd = norbornadiene, Ar(F) = C(6)H(3)(CF(3))(2), PCyp(3) = tris(cyclopentylphosphine)] spontaneously undergoes dehydrogenation of each PCyp(3) ligand in CH(2)Cl(2) solution to form an equilibrium mixture of cis-[Rh{PCyp(2)(eta(2)-C(5)H(7))}(2)][BAr(F) (4)] (2 a) and trans-[Rh{PCyp(2)(eta(2)-C(5)H(7))}(2)][BAr(F) (4)] (2 b), which have hybrid phosphine-alkene ligands. In this reaction nbd acts as a sequential acceptor of hydrogen to eventually give norbornane. Complex 2 b is distorted in the solid-state away from square planar. DFT calculations have been used to rationalise this distortion. Addition of H(2) to 2 a/b hydrogenates the phosphine-alkene ligand and forms the bisdihydrogen/dihydride complex [Rh(PCyp(3))(2)(H)(2)(eta(2)-H(2))(2)][BAr(F) (4)] (5) which has been identified spectroscopically. Addition of the hydrogen acceptor tert-butylethene (tbe) to 5 eventually regenerates 2 a/b, passing through an intermediate which has undergone dehydrogenation of only one PCyp(3) ligand, which can be trapped by addition of MeCN to form trans-[Rh{PCyp(2)(eta(2)-C(5)H(7))}(PCyp(3))(NCMe)][BAr(F) (4)] (6). Dehydrogenation of a PCyp(3) ligand also occurs on addition of Na[BAr(F) (4)] to [RhCl(nbd)(PCyp(3))] in presence of arene (benzene, fluorobenzene) to give [Rh(eta(6)-C(6)H(5)X){PCyp(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] (7: X = F, 8: X = H). The related complex [Rh(nbd){PCyp(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] 9 is also reported. Rapid ( approximately 5 minutes) acceptorless dehydrogenation occurs on treatment of [RhCl(dppe)(PCyp(3))] with Na[BAr(F) (4)] to give [Rh(dppe){PCyp(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] (10), which reacts with H(2) to afford the dihydride/dihydrogen complex [Rh(dppe)(PCyp(3))(H)(2)(eta(2)-H(2))][BAr(F) (4)] (11). Competition experiments using the new mixed alkyl phosphine ligand PCy(2)(Cyp) show that [RhCl(nbd){PCy(2)(Cyp)}] undergoes dehydrogenation exclusively at the cyclopentyl group to give [Rh(eta(6)-C(6)H(5)X){PCy(2)(eta(2)-C(5)H(7))}][BAr(F) (4)] (17: X = F, 18: X = H). The underlying reasons behind this preference have been probed using DFT calculations. All the complexes have been characterised by multinuclear NMR spectroscopy, and for 2 a/b, 4, 6, 7, 8, 9 and 17 also by single crystal X-ray diffraction.  相似文献   

6.
The crystal structure of the new cationic Rh(I) complex trans-[Rh(CO)(2)(L)(2)]BF(4) (L=alpha(2)-(diisopropylphosphino)isodurene) was found to exhibit a nonlinear OC-Rh-CO fragment and weak intramolecular C-H...Rh interactions. These interactions, which have also been shown to occur in solution, have been examined by density functional theory calculations and found to be inextricably linked to the presence of the distorted OC-Rh-CO fragment. This linkage has also been demonstrated by comparison with a highly similar Rh(I) complex, in which these C-H...Rh interactions are absent. Furthermore, the presence of these weak interactions has been shown to have a significant effect on the reactivity of the metal center.  相似文献   

7.
The pathway for the cleavage of an aromatic C-C bond in quinoxaline by a tungsten(II) complex [W(PMe(3))(4)(η(2)-CH(2)PMe(2))H] is explored by performing detailed DFT calculations. The real active complex was found to be [W(PMe(3))(2)(η(2)-CH(2)PMe(2))H] rather than [W(PMe(3))(4)]. The key step in the whole reaction is the reductive elimination of two hydrides that are located originally on quinoxaline (see scheme).  相似文献   

8.
The NHC-stabilized complex [Ni2(iPr2Im)4(cod)] (1) was isolated in good yield from the reaction of [Ni(cod)2] with 1,3-diisopropylimidazole-2-ylidene (iPr2Im). Compound 1 is a source of the [Ni(iPr2Im)2] complex fragment in stoichiometric and catalytic transformations. The reactions of 1 with ethylene and CO under atmospheric pressure or with equimolar amounts of diphenylacetylene lead to the compounds [Ni(iPr2Im)2(eta2-C2H4)] (2), [Ni(iPr2Im)2(eta2-C2Ph2)] (3), and [Ni(iPr2Im)2(CO)2] (4) in good yields. In all cases the [Ni(iPr2Im)2] complex fragment is readily transferred without decomposition or fragmentation. In the infrared spectrum of carbonyl complex 4, the CO stretching frequencies are observed at 1847 and 1921 cm(-1), and are significantly shifted to lower wavenumbers compared with other nickel(0) carbonyl complexes of the type [NiL2(CO)2]. Complex 1 activates the C--F bond of hexafluorobenzene very efficiently to give [Ni(iPr2Im)2(F)(C6F5)] (5). Furthermore, [Ni2(iPr2Im)4(cod)] (1) is also an excellent catalyst for the catalytic insertion of diphenylacetylene into the 2,2' bond of biphenylene. The reaction of 1 with equimolar amounts of biphenylene at low temperature leads to [Ni(iPr2Im)2(2,2'-biphenyl)] (6), which is formed by insertion into the strained 2,2' bond. The reaction of diphenylacetylene and biphenylene at 80 degrees C in the presence of 2 mol % of 1 as catalyst yields diphenylphenanthrene quantitatively and is complete within 30 minutes.  相似文献   

9.
Iron(II)-phenylpyruvate complexes of tetradentate tris(6-methyl-2-pyridylmethyl)amine (6-Me3-TPA) and tridentate benzyl bis(2-quinolinylmethyl)amine (Bn-BQA) were prepared to gain insight into C-C bond cleavage catalyzed by dioxygenase enzymes. The complexes we have prepared and characterized are [Fe(6-Me3-tpa)(prv)][BPh4] (1), [Fe2(6-Me3-tpa)2(pp)][(BPh4)2] (2), and [Fe2(6-Me3-tpa)2(2'-NO2-pp)][(BPh4)2] (3), [Fe(6-Me3-tpa)(pp-Me)][BPh4] (4), [Fe(6-Me3-tpa)(CN-pp-Et)][BPh4] (5), and [Fe(Bn-bqa)(pp)] (8), in which PRV is pyruvate, PP is the enolate form of phenylpyruvate, 2'-NO2-PP is the enolate form of 2'-nitrophenylpyruvate, PP-Me is the enolate form of methyl phenylpyruvate, and CN-PP-Et is the enolate form of ethyl-3-cyanophenylpyruvate. The structures of mononuclear complexes 1 and 5 were determined by single-crystal X-ray diffraction. Both the PRV ligand in 1 and the CN-PP-Et ligand in 5 bind to the iron(II) center in a bidentate manner and form 5-membered chelate rings, but the alpha-keto moiety is in the enolate form in 5 with concomitant loss of a C-H(beta) proton. The PP ligands of 2, 3, 4, and 8 react with dioxygen to form benzaldehyde and oxalate products, which indicates that the C2-C3 PP bond is cleaved, in contrast to cleavage of the C1-C2 bond previously observed for complexes that do not contain alpha-ketocarboxylate ligands in the enolate form. These reactions serve as models for metal-containing dioxygenase enzymes that catalyze the cleavage of aliphatic C-C bonds.  相似文献   

10.
Complex formation between FeX(2)6 H(2)O (X=BF(4) or ClO(4)) and the pyridine-derived tetrapodal tetraphosphane C(5)H(3)N[CMe(CH(2)PMe(2))(2)](2) (1) in methanol proceeds with solvent-induced cleavage of one PMe(2) group. Depending on the reaction temperature and the nature of the counterion, iron(II) is coordinated, in distorted square-pyramidal fashion, by the anionic remainder of the chelating ligand, C(5)H(3)N[CMe(CH(2)PMe(2))(2)][CMe(CH(2)PMe(2))(CH(2) (-))] (NP(3)C(-) donor set: X=BF(4), -50 degrees C: 2; X=ClO(4), RT: 4) or its protonated form C(5)H(3)N[CMe(CH(2)PMe(2))(2)][CMe(CH(2)PMe(2))(CH(3))], in which the methyl group is in agostic interaction with the metal centre (X=BF(4), RT: 3; X=ClO(4), +50 degrees C: 5). A monodentate phosphinite ligand Me(2)POMe, formed from the cleaved PMe(2) group and methanol, completes the coordination octahedron in both cases. Working in CD(3)OD (X=BF(4), RT) gives the deuterium-substituted analogue of 3, with ligands L(CH(2)D) (L=residual chelating ligand) and Me(2)POCD(3). A mechanism for the observed phosphorus-carbon bond cleavage is suggested. Complex 2, when isolated at -50 degrees C, is stable in the solid state even at room temperature. The reaction of 2 in methanol with carbon monoxide (10.5 bar) at elevated temperature forms, in addition to as yet unidentified side products, the carbonyl complex [(1)Fe(CO)](BF(4))(2) (7), in which the previous P--C bond cleavage has been reversed, reforming the original tetrapodal pentadentate NP(4) ligand 1. All compounds have been fully characterised, including X-ray structure analyses in most cases.  相似文献   

11.
The reaction of 1,3,5-triisopropyl-1,3,5-triazacyclohexane (TiPTAC) with [Y(AlMe(4))(3)] resulted in the formation of [(TiPTAC)Y(Me(3)AlCH(2)AlMe(3))(μ-MeAlMe(3))] by C-H activation and methane extrusion. In contrast, the presence of bulkier cyclohexyl groups on the nitrogen atoms in 1,3,5-tricyclohexyl-1,3,5-triazacyclohexane (TCyTAC) led to the formation of the cationic dimethyl complex [(TCyTAC)(2)YMe(2)][AlMe(4)]. The investigations reveal a dependency of the reaction mechanism on the steric bulk of the N-alkyl entity and the solvent employed. In toluene C-H activation was observed in reactions of [Y(AlMe(4))(3)] with 1,3,5-trimethyl-1,3,5-triazacyclohexane (TMTAC) and TiPTAC. In THF molecular dimethyl cations, such as [(TCyTAC)(2)YMe(2)][AlMe(4)], [(TMTAC)(2)YMe(2)][AlMe(4)] and [(TiPTAC)(2)YMe(2)][AlMe(4)], could be synthesised by addition of the triazacyclohexane at a later stage. The THF-solvated complex [YMe(2)(thf)(5)][AlMe(4)] could be isolated and represents an intermediate in these reactions. It shows that cationic methyl complexes of the rare-earth metals can be formed by donor-induced cleavage of the rare-earth-metal tetramethylaluminates. The compounds were characterised by single-crystal X-ray diffraction or multinuclear and variable-temperature NMR spectroscopy, as well as elemental analyses. Variable-temperature NMR spectroscopy illustrates the methyl group exchange processes between the cations and anions in solution.  相似文献   

12.
C-H bond activation was observed in a novel PCO ligand 1 (C(6)H(CH(3))(3)(CH(2)OCH(3))(CH(2)P(t-Bu)(2))) at room temperature in THF, acetone, and methanol upon reaction with the cationic rhodium precursor, [Rh(coe)(2)(solv)(n)()]BF(4) (solv = solvent; coe = cyclooctene). The products in acetone (complexes 3a and 3b) and methanol (complexes 4a and 4b) were fully characterized spectroscopically. Two products were formed in each case, namely those containing uncoordinated (3a and 4a) and coordinated (3b and 4b) methoxy arms, respectively. Upon heating of the C-H activation products in methanol at 70 degrees C, C-C bond activation takes place. Solvent evaporation under vacuum at room temperature for 3-4 days also results in C-C activation. The C-C activation product, ((CH(3))Rh(C(6)H(CH(3))(2)(CH(2)OCH(3))(CH(2)P(t-Bu)(2))BF(4)), was characterized by X-ray crystallography, which revealed a square pyramidal geometry with the BF(4)(-) anion coordinated to the metal. Comparison to the structurally similar and isoelectronic nonchelating Rh-PC complex system and computational studies provide insight into the reaction mechanism. The reaction mechanism was studied computationally by means of a two-layer ONIOM model, using both the B3LYP and mPW1K exchange-correlation functionals and a variety of basis sets. Polarization functions significantly affect relative energetics, and the mPW1K profile appears to be more reliable than its B3LYP counterpart. The calculations reveal that the electronic requirements for both C-C and C-H activation are essentially the same (14e intermediates are the key ones). On the other hand, the steric requirements differ significantly, and chelation appears to play an important role in C-C bond activation.  相似文献   

13.
Iridium complexes of DMA-imine [2,6-dimethylphenyl-1'-methyl-2'-methoxyethylimine, 1 a) and (R)-DMA-amine [(1'R)-2,6-dimethylphenyl-1'-methyl-2'-methoxyethylamine, 2 a] that are relevant to the catalytic imine hydrogenation step of the Syngenta (S)-Metolachlor process were synthesized: metathetical exchange of [Ir2Cl2(cod)2] (cod=1,5-cyclooctadiene) with [Ag(1 a)2]BF4 and [Ag((R)-2 a)2]BF4 afforded [Ir(cod)(kappa2- -1 a)]BF4 (11) and [Ir(cod)(kappa2-(R)-2 a)]BF4 ((R)-19)), respectively. These complexes were then used in stopped-flow experiments to study the displacement of amine 2 a from complex 19 by imine 1 a to form the imine complex 11, thus modeling the product/substrate exchange step in the catalytic cycle. The data suggest a two-step associative mechanism characterized by k1=(2.6+/-0.3) x 10(2) M(-1) s(-1) and k2=(4.3+/-0.6) x 10(-2) s(-1) with the respective activation energies EA1=(7.5+/-0.6) kJ mol(-1) and EA2=(37+/-3) kJ mol(-1). Furthermore, complex 11 reacted with H2O to afford the hydrolysis product [Ir(cod)(eta(6-)-2,6-dimethylaniline)]BF4 (12), and with I2 to liberate quantitatively the DMA-iminium salt 14. On the other hand, the chiral amine complex (R)-19 formed the optically inactive eta6-bound compound [Ir(cod)(eta6-rac-2 a)]BF4 (rac-18) upon dissolution in THF at room temperature, presumably via intramolecular C-H activation. This racemization was found to be a two-step event with k'1=9.0 x 10(-4) s(-1) and k2=2.89 x 10(-5) s(-1), featuring an optically active intermediate prior to sp3 C-H activation. Compounds 11, 12, rac-18, and (R)-19 were structurally characterized by single-crystal X-ray analyses.  相似文献   

14.
The reaction of the bis(ethylene) complex [Tp(Me(2) )Ir(C(2)H(4))(2)] (1) (Tp(Me(2) ): hydrotris(3,5-dimethylpyrazolyl)borate) with two equivalents of dimethyl acetylenedicarboxylate (DMAD) in CH(2)Cl(2) at 25 degrees C gives the hydride-alkenyl species [Tp(Me(2) )IrH{C(R)=C(R)C(R)=C(R)CH=CH(2)}] (2, R: CO(2)Me) in high yield. A careful study of this system has established the active role of a number of intermediates en route to producing 2. The first of these is the iridium(I) complex [Tp(Me(2) )Ir(C(2)H(4))(DMAD)] (4) formed by substitution of one of the ethylene ligands in 1 by a molecule of DMAD. Complex 4 reacts further with another equivalent of the alkyne to give the unsaturated metallacyclopentadiene [Tp(Me(2) )Ir{C(R)=C(R)C(R)=C(R)}], which can be trapped by added water to give adduct 7, or can react with the C(2)H(4) present in solution generating complex 2. This last step has been shown to proceed by insertion of ethylene into one of the Ir--C bonds of the metallacyclopentadiene and subsequent beta-H elimination. Complex 1 reacts sequentially with one equivalent of DMAD and one equivalent of methyl propiolate (MP) in the presence of water, with regioselective formation of the nonsymmetric iridacyclopentadiene [Tp(Me(2) )Ir{C(R)=C(R)C(H)=C(R)}(H(2)O)] (9). Complex 9 reacts with ethylene giving a hydride-alkenyl complex 10, related to 2, in which the C(2)H(4) has inserted regiospecifically into the Ir--C(R) bond that bears the CH functionality. Heating solutions of either 2 or 10 in CH(2)Cl(2) allows the formation of the allyl species 3 or 11, respectively, by simple stereoselective migration of the hydride ligand to the Calpha alkenyl carbon atom and concomitant bond reorganization of the resulting organic chain. All the compounds described herein have been characterized by microanalysis, IR and NMR spectroscopy, and for the case of 3, 7, 7CO, 8NCMe, 9, 9NCMe, and 10, also by single-crystal X-ray diffraction studies.  相似文献   

15.
Reductive elimination of methane from methyl hydride half-sandwich phosphane complexes of the Group 9 metals has been investigated by DFT calculations on the model system [CpM(PH(3))(CH(3))(H)] (M = Co, Rh, Ir). For each metal, the unsaturated product has a triplet ground state; thus, spin crossover occurs during the reaction. All relevant stationary points on the two potential energy surfaces (PES) and the minimum energy crossing point (MECP) were optimized. Spin crossover occurs very near the sigma-CH(4) complex local minimum for the Co system, whereas the heavier Rh and Ir systems remain in the singlet state until the CH(4) molecule is almost completely expelled from the metal coordination sphere. No local sigma-CH(4) minimum was found for the Ir system. The energetic profiles agree with the nonexistence of the Co(III) methyl hydride complex and with the greater thermal stability of the Ir complex relative to the Rh complex. Reductive elimination of methane from the related oxidized complexes [CpM(PH(3))(CH(3))(H)](+) (M = Rh, Ir) proceeds entirely on the spin doublet PES, because the 15-electron [CpM(PH(3))](+) products have a doublet ground state. This process is thermodynamically favored by about 25 kcal mol(-1) relative to the corresponding neutral system. It is essentially barrierless for the Rh system and has a relatively small barrier (ca. 7.5 kcal mol(-1)) for the Ir system. In both cases, the reaction involves a sigma-CH(4) intermediate. Reductive elimination of ethane from [CpM(PH(3))(CH(3))(2)](+) (M = Rh, Ir) shows a similar thermodynamic profile, but is kinetically quite different from methane elimination from [CpM(PH(3))(CH(3))(H)](+): the reductive elimination barrier is much greater and does not involve a sigma-complex intermediate. The large difference in the calculated activation barriers (ca. 12.0 and ca. 30.5 kcal mol(-1) for the Rh and Ir systems, respectively) agrees with the experimental observation, for related systems, of oxidatively induced ethane elimination when M = Rh, whereas the related Ir systems prefer to decompose by alternative pathways.  相似文献   

16.
A series of iridium tetrahydride complexes [Ir(H)4(PSiP‐R)] bearing a tridentate pincer‐type bis(phosphino)silyl ligand ([{2‐(R2P)C6H4}2MeSi], PSiP‐R, R=Cy, iPr, or tBu) were synthesized by the reduction of [IrCl(H)(PSiP‐R)] with Me4N ⋅ BH4 under argon. The same reaction under a nitrogen atmosphere afforded a rare example of thermally stable iridium(III)–dinitrogen complexes, [Ir(H)2(N2)(PSiP‐R)]. Two isomeric dinitrogen complexes were produced, in which the PSiP ligand coordinated to the iridium center in meridional and facial orientations, respectively. Attempted substitution of the dinitrogen ligand in [Ir(H)2(N2)(PSiP‐Cy)] with PMe3 required heating at 150 °C to give the expected [Ir(H)2(PMe3)(PSiP‐Cy)] and a trigonal bipyramidal iridium(I)–dinitrogen complex, [Ir(N2)(PMe3)(PSiP‐Cy)]. The reaction of [Ir(H)4(PSiP‐Cy)] with three equivalents of 2‐norbornene (nbe) in benzene afforded [IrI(nbe)(PSiP‐Cy)] in a high yield, while a similar reaction of [Ir(H)4(PSiP‐R)] with an excess of 3,3‐dimethylbutene (tbe) in benzene gave the C H bond activation product, [IrIII(H)(Ph)(PSiP‐R)], in high yield. The oxidative addition of benzene is reversible; heating [IrIII(H)(Ph)(PSiP‐Cy)] in the presence of PPh3 in benzene resulted in reductive elimination of benzene, coordination of PPh3, and activation of the C H bond of one aromatic ring in PPh3. [IrIII(H)(Ph)(PSiP‐R)] catalyzed a direct borylation reaction of the benzene C H bond with bis(pinacolato)diboron. Molecular structures of most of the new complexes in this study were determined by a single‐crystal X‐ray analysis.  相似文献   

17.
18.
Novel neutral phosphine-modified heteroscorpionate ligand (3,5-Me(2)Pz)(2)CHPPh(2) (1) and its derivatives oxophosphine (2) and iminophosphine (3) heteroscorpionates were synthesized for the first time. These neutral heteroscorpionate ligands displayed unique chemistry towards rare-earth metal tris(alkyl)s [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Lu, Sc). The reaction between compound 1 and [Ln(CH(2)SiMe(3))(3)(thf)(2)] afforded heteroscorpionate rare-earth metal trialkyl adduct complexes 4a-c. Compounds 2 and 3 were treated with [Ln(CH(2)SiMe(3))(3)(thf)(2)] to give the unprecedented zwitterionic heteroscorpionate rare-earth metal dialkyls 5 and 6, respectively. In the process, the heteroscorpionates transferred to the carbanions by means of methine C-H bond cleavage that was attributed to the presence of the electron-withdrawing groups. In addition the ligand and central metal showed a concerted effect on both the catalytic activity and specific selectivity of complexes 4-6 for the ring-opening polymerization (ROP) of rac-lactide (rac-LA). All the adduct complexes 4 were nonselective and gave atactic polylactide (PLA), probably due to the dissociation of ligand 1 from the active metal center during the polymerization. Strikingly, zwitterionic complexes 5 catalyzed rapid ROP of rac-LA to produce PLAs with heterotacticity up to 0.87. However, the zwitterionic complexes 6 were less active and less selective than 5, which might be on account of the stronger coordination of the tetradentate ligand. Complexes 5 represent rare examples of the selective ROP of rac-LA mediated by rare-earth metal complexes supported by non-bisphenolate ligands.  相似文献   

19.
Anilido phosphinimino ancillary ligand H(2)L(1) reacted with one equivalent of rare earth metal trialkyl [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] (Ln=Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH(3))(3)(THF)] (1 a: Ln=Y; 1 b: Ln=Lu). In this process, deprotonation of H(2)L(1) by one metal alkyl species was followed by intramolecular C--H activation of the phenyl group of the phosphine moiety to generate dianionic species L(1) with release of two equivalnts of tetramethylsilane. Ligand L(1) coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex l a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL(1))LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C--H activation of the phenyl group is reversible. When 1 a was exposed to moisture, the hydrolyzed dimeric complex [{(HL(1))Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] with amino phosphine ligands HL(2-R) gave stable rare earth metal bis-alkyl complexes [(L(2-R))Ln{CH(2)Si(CH(3))(3)}(2)(thf)] (4 a: Ln=Y, R=Me; 4 b: Ln=Lu, R=Me; 4 c: Ln=Y, R=iPr; 4 d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4 a and 4 c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L(2-R))Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5 a: R=Me; 5 b: R=iPr). Complexes 1 a,b and 4 a-d initiated the ring-opening polymerization of d,l-lactide with high activity to give atactic polylactides.  相似文献   

20.
The ethene derivatives [(eta(5)-C(5)R(5))RuX(C(2)H(4))(PPh(3))] with R=H and Me, which have been prepared from the eta(3)-allylic compounds [(eta(5)-C(5)R(5))Ru(eta(3)-2-MeC(3)H(4))(PPh(3))] (1, 2) and acids HX under an ethene atmosphere, are excellent starting materials for the synthesis of a series of new halfsandwich-type ruthenium(II) complexes. The olefinic ligand is replaced not only by CO and pyridine, but also by internal and terminal alkynes to give (for X=Cl) alkyne, vinylidene, and allene compounds of the general composition [(eta(5)-C(5)R(5))RuCl(L)(PPh(3))] with L=C(2)(CO(2)Me)(2), Me(3)SiC(2)CO(2)Et, C=CHCO(2)R, and C(3)H(4). The allenylidene complex [(eta(5)-C(5)H(5))RuCl(=C=C=CPh(2))(PPh(3))] is directly accessible from 1 (R=H) in two steps with the propargylic alcohol HC triple bond CC(OH)Ph(2) as the precursor. The reactions of the ethene derivatives [(eta(5)-C(5)H(5))RuX(C(2)H(4))(PPh(3))] (X=Cl, CF(3)CO(2)) with diazo compounds RR'CN(2) yield the corresponding carbene complexes [(eta(5)-C(5)R(5))RuX(=CRR')(PPh(3))], while with ethyl diazoacetate (for X=Cl) the diethyl maleate compound [(eta(5)-C(5)H(5))RuCl[eta(2)-Z-C(2)H(2)(CO(2)Et)(2)](PPh(3))] is obtained. Halfsandwich-type ruthenium(II) complexes [(eta(5)-C(5)R(5))RuCl(=CHR')(PPh(3))] with secondary carbenes as ligands, as well as cationic species [(eta(5)-C(5)H(5))Ru(=CPh(2))(L)(PPh(3))]X with L=CO and CNtBu and X=AlCl(4) and PF(6), have also been prepared. The neutral compounds [(eta(5)-C(5)H(5))RuCl(=CRR')(PPh(3))] react with phenyllithium, methyllithium, and the vinyl Grignard reagent CH(2)=CHMgBr by displacement of the chloride and subsequent C-C coupling to generate halfsandwich-type ruthenium(II) complexes with eta(3)-benzyl, eta(3)-allyl, and substituted olefins as ligands. Protolytic cleavage of the metal-allylic bond in [(eta(5)-C(5)H(5))Ru(eta(3)-CH(2)CHCR(2))(PPh(3))] with acetic acid affords the corresponding olefins R(2)C=CHCH(3). The by-product of this process is the acetato derivative [(eta(5)-C(5)H(5))Ru(kappa(2)-O(2)CCH(3))(PPh(3))], which can be reconverted to the carbene complexes [(eta(5)-C(5)H(5))RuCl(=CR(2))(PPh(3))] in a one-pot reaction with R(2)CN(2) and Et(3)NHCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号