首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
The paper aims to clarify the modelling results concerning the heat transfer and fluid flow in a radio‐frequency plasma torch with argon at atmospheric pressure. Fluid numerical simulation requires the coupling of magnetohydrodynamics (MHD) and thermal phenomena. This model combines Navier–Stokes equations with the Maxwell's equations for compressible fluid and electromagnetic phenomena successively. A numerical formulation based on the finite element method is used. In this study, fluid flow and temperature equations are simultaneously solved (direct method, instead of using the indirect method) using a finite elements method (FEM) for optically thin argon plasmas under the assumptions of local thermodynamic equilibrium (LTE) and laminar flow. Appropriate boundary conditions are given, and nonlinear parameters such as the thermal and electrical conductivity of the gas and input power used in the simulation are detailed. We have found that the source of power is located on the torch wall in this type of inductive discharge. The center can be heated by conduction and convection via electromagnetic phenomena (power loss and Lorentz force). (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The modelling of the heat-transfer process in a phase-change storage medium consisting of parallel flow channels is presented. The model describing the mechanism of heat transfer from the process air stream to the surface of phase-change material by convection and diffusion of heat by conduction in the media consists of coupled, non-linear partial differential equations. These equations are solved by a finite difference scheme. Numerical solutions are used to study the performance of phase-change storage media during a single blow operation. A parametric study is also carried out for different non-dimensional parameters and operating conditions.  相似文献   

3.
激光器中压气体风冷系统的实验研究   总被引:1,自引:0,他引:1  
本文通过模拟传热模型,建立起激光器风冷系统的换热基本方程式.分析指出:仅当热阻主要集中于光泵浦——冷却质一侧时,增加循环工作物质密度才有提高换热效果、减小流动阻力、降低风机耗功的明显效果.在此基础上研制成功重复率为10c/s,热耗散功率200W的激光器中压气体封闭循环风冷系统.实验研究所用气体压力P、流速W、壳体外壁侧热阻等诸因素对冷却效能影响的结果亦与分析结论一致.  相似文献   

4.
This work deals with the dynamics of a vibrating piezoelectric disc, which creates, under specific vibrating conditions, an air squeeze film that is able to levitate a freely suspended object.In such problems, the coupling effects between the various components affect the overall dynamical behaviour of the combined system. For complex systems, which combine elastic and electro-static effects together with compressible fluid effects, the coupled equations are often dealt with separately to avoid modelling and computational complexity. In this paper, the importance of handling such systems in a coupled manner is advocated by means of numerical and experimental examples. A coupled model is derived in this work making use of a concise numerical solver to allow for this investigation under several conditions. The piezoelectric part of the structure is modelled by finite elements while the squeeze film phenomenon is represented by means of finite-difference equations, to model a variant of the Reynolds equation. The numerical model was verified during each step in the development of the numerical algorithm and indeed showed good agreement with existing publications, but once the components were combined, it was found that several phenomena were misrepresented in the past due to the neglect of the coupling effects. Several physical insights are brought from the simulation and investigation of the numerical results. In the last part, the importance of coupled analysis is emphasized by introducing an experimental investigation of the dynamical behaviour while conducting a comparison with numerical simulation results. From this comparison, the limitations of state-of-the-art modelling procedures are clarified.  相似文献   

5.
将整个燃烧室部件(气缸盖-气缸套-活塞组-润滑油膜)作为一个耦合体,在对耦合体进行三维传热数值模拟的基础上,利用分区求解、边界耦合法建立缸内工作过程与燃烧室部件的三维耦合计算模型,并利用离散传递法实现缸内辐射传热与燃烧室部件的耦合三维仿真模拟,以此考察燃烧室部件辐射传热空间非均匀性对缸内燃油雾化的影响.结果表明,辐射换...  相似文献   

6.
In this problem, simultaneous effects of Joule and viscous dissipationin three-dimensional flow of nanoliquid have been addressed in slip flow regime under timedependent rotational oscillations. Silver nanoparticles are submerged in the base fluid (water)due to their chemical and biological features. To increment the novelty, effects of cubicautocatalysis chemical reactions and radiative heat transfer have been incorporated in therelated boundary layer equations. Dimensionless partial differential system is solved byemploying the proposed implicit finite difference approach. Convergence conditions andstability criteria are obtained to ensure the convergence and accuracy of solutions.A comparative analysis is proposed for no-slip nanofluid flow (NSNF) and slip nanofluid flow(SNF). Variations in skin-friction coefficients, Sherwood and Nusselt numbers against physicalparameters are tabulated. It is investigated that velocity slip and temperature jump significantlycontrol drag forces and rate of heat transfer.  相似文献   

7.
The steady flow of an incompressible viscous fluid due to a rotating disk in a nanofluid is studied. The transformed boundary layer equations are solved numerically by a finite difference scheme, namely the Keller-box method. Numerical results for the flow and heat transfer characteristics are obtained for various values of the nanoparticle volume fraction parameter φ and suction/injection parameter h0. Two models for the effective thermal conductivity of the nanofluid, namely the Maxwell-Garnett model and the Patel model, are considered. It is found that for the Patel model, the heat transfer rate at the surface increases for both suction and injection, whereas different behaviors are observed for the Maxwell-Garnett model, i.e. increasing the values of φ leads to a decrease in the heat transfer rate at the surface for suction, but increases for injection. The results of this study can be used in the design of an effective cooling system for electronic components to help ensure effective and safe operational conditions.  相似文献   

8.
The present paper addresses the megnetohydrodynamic Jeffrey fluid flow with heat and mass transfer on an infinitely rotating upright cone. Inquiry is carried out with heat source/sink and chemical reaction effects. Further, constant thermal and concentration flux situations are imposed. Optimal homotopy analysis method (OHAM) is employed to achieve series solutions of the concerned differential equations. Important results of the flow phenomena are explored and deliberated by means of graphs and numerical tables. It is perceived that thermal boundary layer thickness possess contrast variations for the heat source and heat sink, respectively. The chemical reaction enhances the heat transfer rate but decline the mass transfer rate. Moreover, the precision of the existing findings is verified by associating them with the previously available work.  相似文献   

9.
刘杰平  程晓丽  王强 《计算物理》2005,22(2):143-148
采用计算奇异摄动法构造典型燃烧反应系统的简化化学动力模型,基于燃烧反应控制方程寻找理想基向量,借助所得理想基向量实现快慢反应模态间的解耦,并给出参与性指数、原子团指针和重要性指数等关键参数,进而构造快模态状态方程和简化化学动力模型.典型CO-CH4-Air混合燃烧反应系统的计算结果表明,由计算奇异摄动法得到的简化燃烧反应系统是原燃烧反应系统很好的近似.  相似文献   

10.
This paper describes a theoretical study to investigate the heat transfer characteristics of porous radiant burners (PRBs). In the present work, a 2-D rectangular model is used to solve the governing equations for porous medium and gas flow before the premixed flame to the exhaust gas. The gas and the solid phases are considered in non-local thermal equilibrium and combustion in the porous medium is modeled by considering a non-uniform heat generation zone. The homogeneous porous media, in addition to its convective heat exchange with the gas, may absorb, emit and scatter thermal radiation. The radiation effect in the gas flow is neglected but the conductive heat transfer is taken into account. In order to analyze the thermal characteristics of porous burners, the coupled energy equations for the gas and porous medium in steady condition are solved numerically and the discrete ordinates method (DOM) is used to obtain the distribution of radiative heat flux in the porous media. Finally, the effects of various parameters on the performance of porous radiant burners are examined. The present results are compared with some reported theoretical and experimental results by other investigators and good agreement is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号