首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the combustion of methyl esters is crucial to elucidate kinetic pathways and predict combustion parameters, soot yields, and fuel performance of biodiesel, however most kinetic studies of methyl esters have focused on smaller, surrogate model esters. Methyl hexanoate is a larger methyl ester approaching the chain length of methyl esters found in biodiesel and has not received as much research attention as other smaller esters. The purpose of this work is to present the first atmospheric pressure combustion data of methyl hexanoate, CH3CH2CH2CH2CH2COOCH3. Mixtures of 2% methyl hexanoate in O2 and N2 are studied using a plug flow reactor at atmospheric pressure, wall temperatures from 573 to 973 K, residence times from roughly 1-2 s., and fuel equivalence ratios of 1, 1.5, and 2. Exhaust gases are analyzed by a gas chromatograph-mass spectrometer system and species mole fractions are presented. The literature model shows satisfactory agreement with the experimental species profiles and improvements for future mechanistic studies are suggested. In particular, this work proposes new unimolecular decomposition pathways of methyl hexanoate to form methanol or methyl acetate. Furthermore, the experiment detected three unsaturated esters that are direct products of the low temperature oxidation chemistry and it provides more insight into branching ratios for the formation of methyl hexanoate radicals and for the decomposition of hydroperoxyalkyl radicals.  相似文献   

2.
Methylbutanoate (MB), a C4 methyl ester, represents the simplest surrogate that captures the chemical effects of the ester moiety in biodiesel and biodiesel surrogates. An updated chemical kinetic model has been developed to characterize the ignition and flame characteristics of MB. The mechanistic elements within this model that relate to the MB and smaller ester/oxygenate sub-mechanisms are drawn from the prototypical Fisher et al. model and from more recent theory and modeling efforts. The MB model development which is based on an iterative procedure involving global sensitivity analyses to identify elementary reactions that govern ignition and subsequent high level ab initio based theoretical updates to these reaction rates are presented. The MB model makes reasonable predictions of ignition delays and laminar flame speeds.The C5–C7 submechanisms from the LLNL n-heptane (NH) model were merged with the present MB model to obtain a detailed chemical kinetics model for a surrogate blend representing biodiesel. The detailed MB-NH model (661 species) was reduced using graph based techniques. The robust reduction techniques employed result in a reduced model (145 species) that is in good agreement with the detailed model over a wide range of conditions. 3-D compression ignition (CI) engine simulations utilizing this reduced chemistry model for MB-NH blends as a surrogate for biodiesel show good agreement with the experimental data suggesting the utility of this model for predictions of combustion and emission characteristics of biodiesel in realistic CI engine simulations.  相似文献   

3.
In the present study, the effect of ultrasound irradiation on the transesterification parameters, biodiesel properties, and its combustion profiles in the diesel engine was investigated. Moreover, date seed oil (DSO) was firstly utilized in the ultrasound-assisted transesterification reaction. DSO was extracted from Zahidi type date (Phoenix dactylifera) and was esterified to reduce its Free Fatty Acid (FFA) content. Biodiesel yield was optimized in both heating methods, so that the yield of 96.4% (containing 93.5% ester) at 60 °C, with 6 M ratio of methanol/oil, 1 wt% of catalyst (NaOH) and at 90 min of reaction time was reported. The ultrasound irradiation did not influence the reaction conditions except reaction time, reduced to 5 min (96.9% yield and 91.9% ester). The ultrasonic irradiation also influenced on the physicochemical properties of DSO biodiesel and improved its combustion in the diesel engine. The analysis results related to the engine and gas emission confirmed that the ultrasound-assisted produced biodiesel has lower density and viscosity, and higher oxygen content facilitating injection of fuel in the engine chamber and its combustion, respectively. Although, B40 (biodiesel blend consisting of 40% biodiesel and 60% net diesel fuel) as a blend of both fuels presented higher CO2 and lower CO and HC in the emissions, the DSO biodiesel produced by ultrasound irradiation presented better specifications (caused about 2-fold improvement in emissions than that of conventional method). The findings of the study confirmed the positive effect of the ultrasound irradiation on the properties of the produced biodiesel along with its combustion properties in the diesel engine, consequently reducing air pollution problems.  相似文献   

4.
Biofuels, including biodiesel have the potential to partially replace the conventional diesel fuels for low-temperature combustion engine applications to reduce the CO2 emission. Due to the long chain lengths and high molecular weights of the biodiesel components, it is quite challenging to study the biodiesel combustion experimentally and computationally. Methyl crotonate, a short unsaturated fatty acid methyl ester (FAME) is chosen for this chemical kinetic study as it is considered as a model biodiesel fuel. Auto-ignition experiments were performed in a rapid compression machine (RCM) at pressures of 20 and 40 bar under diluted conditions over a temperature range between 900 and 1074 K, and at different equivalence ratios (? = 0.25, 0.5 and 1.0). A chemical kinetic mechanism is chosen from literature (Gaïl et al. 2008) and is modified to incorporate the low-temperature pathways. The mechanism is validated against existing shock tube data (Bennadji et al. 2009) and the present RCM data. The updated mechanism shows satisfactory agreement with the experimental data with significant improvements in low-temperature ignition behavior. The key reactions at various combustion conditions and the improved reactivity of the modified mechanism are analyzed by performing sensitivity and path flux analysis. This study depicts the importance of low-temperature pathways in predicting the ignition behavior of methyl crotonate at intermediate and low temperatures.  相似文献   

5.
Unsaturated fatty acid methyl esters are ubiquitous in biodiesel fuels. The C = C double bond greatly affects the combustion characteristics of biodiesel, especially its ignition behavior at low temperatures. In this work, we report detailed theoretical study on the mechanism and kinetics of the hydrogen abstraction reactions of linear unsaturated C6 methyl esters with hydroperoxy radical (HO2), which play a critical role in the low‐temperature combustion of biodiesel. Reaction profiles are obtained via intrinsic reaction coordinate (IRC) analysis including the formation of reactant complexes and product complexes at the entrance and exit channels, respectively. The potential energy surfaces are explored at the CBS‐QB3 level. The following β‐scission reactions of the forming radicals are also investigated at the same level of theory. The high‐pressure limit rate constants for all the reactions in the temperature range from 500 to 2000 K are calculated via conventional transition‐state theory with quantum tunneling effect and fitted to the modified Arrhenius expression.  相似文献   

6.
The detailed chemical structures of low-pressure premixed laminar flames fueled by three simple unsaturated C5H8O2 esters, the methyl crotonate (MC), methyl methacrylate (MMA), and ethyl propenoate (EPE), are investigated using tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry. Significant differences in the compositions of key reaction intermediates between these flames under similar flame conditions are observed. The results enable further refinement and validation of a detailed chemical kinetic reaction mechanism, which is largely based on a previous model for saturated esters. Detailed kinetic modeling describes how these differences are related to molecular structures, leading to unique fuel destruction pathways for each of these isomers. Meanwhile, the effect of carbon carbon double bonds on the combustion chemistry of small fatty acid esters is addressed.  相似文献   

7.
The combustion and emission production processes of a DISI (direct-injection spark-ignition) engine were modelled by combining flamelet models for premixed and diffusion flames. A new surrogate fuel was proposed to approximate the complicated composition of real gasoline. In contrast to simpler conventional models, the fuel was modelled as a ternary mixture of three hydrocarbons: iso-octane, n-heptane and toluene. Turbulent flame propagation in a partially premixed field was modelled by a premixed flamelet model. The mass fractions of the detailed composition of species in burnt gas were predicted by a diffusion flamelet model. For the pollutant formation modelling, a two-step oxidation of CO and H2 was used to simulate the secondary diffusion flame. The extended Zeldovich mechanism was used to model NOx formation, while a phenomenological model was used to model soot formation. This model was initially applied to a simple geometry to investigate the fundamentals of the model's behaviour, after which three-dimensional computational fluid dynamic (CFD) simulations were performed in a realistic engine geometry.  相似文献   

8.
Recent studies have demonstrated stable generation of power from pure ammonia combustion in a micro gas turbine (MGT) with a high combustion efficiency, thus overcoming some of the challenges that discouraged such applications of ammonia in the past. However, achievement of low NOx emission from ammonia combustors remains an important challenge. In this study, combustion techniques and combustor design for efficient combustion and low NOx emission from an ammonia MGT swirl combustor are proposed. The effects of fuel injection angle, combustor inlet temperature, equivalence ratio, and ambient pressure on flame stabilization and emissions were investigated in a laboratory high pressure combustion chamber. An FTIR gas analyser was employed in analysing the exhaust gases. Numerical modeling using OpenFOAM was done to better understand the dependence of NO emissions on the equivalence ratio. The result show that inclined fuel injection as opposed to vertical injection along the combustor central axis resulted to improved flame stability, and lower NH3 and NOx emissions. Numerical and experimental results showed that a control of the equivalence ratio upstream of the combustor is critical for low NOx emission in a rich-lean ammonia combustor. NO emission had a minimum value at an upstream equivalence ratio of 1.10 in the experiments. Furthermore, NO emission was found to decrease with ambient pressure, especially for premixed combustion. For the rich-lean combustion strategy employed in this study, lower NOx emission was recorded in premixed combustion than in non-premixed combustion indicating the importance of mixture uniformity for low NOx emission from ammonia combustion. A prototype liner developed to enhance the control and uniformity of the equivalence ratio upstream of the combustor further improved ammonia combustion. With the proposed liner design, NOx emission of 42?ppmv and ammonia combustion efficiency of 99.5% were achieved at 0.3?MPa for fuel input power of 31.44?kW.  相似文献   

9.
Real biodiesel fuels are mixtures comprising many high molecular weight components, making it a challenge to predict their combustion chemistry with detailed kinetic models. Our group previously proposed a functional-group approach (FGMech) to model the combustion chemistry of real gasoline and jet fuels; this approach has now been extended to model real biodiesel combustion and mixtures with petroleum fuels. As in our previous work, a decoupling philosophy is adopted for construction of the model. A lumped reaction mechanism describes the (oxidative) pyrolysis of fuels, while a detailed base chemistry model represents the oxidation of key pyrolysis intermediates. However, due to the presence of the ester group, several oxygenated species are identified as additional primary products and incorporated into the lumped reaction steps. In addition to the lumped reactions initiated by unimolecular decomposition and H-atom abstraction reactions, a lumped H-atom addition-elimination reaction is also incorporated as a new reaction class to account for the presence of double bonds. Stoichiometric parameters are obtained based on a multiple linear regression (MLR) model, which establishes relationships between the fuel's functional group distributions and the stoichiometric parameters of the lumped reactions. Global rate constants are developed from consistent rate rules obtained from pure fuels. New pyrolysis experimental data for methyl pentanoate/methyl nonanoate and methyl heptanoate/n-heptane mixtures (50%/50% in mol) are obtained in a jet-stirred reactor at atmospheric pressure. In general, kinetic models developed using the FGMech approach can reasonably reproduce all the validation targets obtained in this work, as well as those in the literature, confirming that functional-group-modeling is a promising approach to simulate combustion behavior of diesel/biodiesel surrogate fuels and real biodiesels.  相似文献   

10.
Abstract

New organic–inorganic nanocomposites based on PVA, SiO2 and SSA were prepared in a single step using a solution casting method, with the aim to improve the thermomechanical properties and ionic conductivity of PVA membranes. The structure, morphology, and properties of these membranes were characterized by Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), water uptake (Wu) measurements and ionic conductivity measurements. The SAXS/WAXS analysis showed that the silica deposited in the form of small nanoparticles (~ 10?nm) in the PVA composites and it also revealed an appreciable crystallinity of pristine PVA membrane and PVA/SiO2 membranes (decreasing with increasing silica loading), and an amorphous structure of PVA/SSA and PVA/SSA/SiO2 membranes with high SSA loadings. The thermal and mechanical stability of the nanocomposite membranes increased with the increasing silica loading, and silica also decreased the water uptake of membranes. As expected, the ionic conductivity increased with increasing content of the SSA crosslinker, which is a donor of the hydrophilic sulfonic groups. Some of the PVA/SSA/SiO2 membranes had a good balance between stability in aqueous environment (water uptake), thermomechanical stability and ionic conductivity and could be potential candidates for proton exchange membranes (PEM) in fuel cells.  相似文献   

11.
Coal splitting and staging is a promising technology to reduce nitrogen oxides (NOx) emissions from coal combustion through transforming nitrogenous pollutants into environmentally friendly gasses such as nitrogen (N2). During this process, the nitrogenous species in pyrolysis gas play a dominant role in NOx reduction. In this research, a series of reactive force field (ReaxFF) molecular dynamics (MD) simulations are conducted to investigate the fundamental reaction mechanisms of NO removal by nitrogen-containing species (HCN and NH3) in coal pyrolysis gas under various temperatures. The effects of temperature on the process and mechanisms of NO consumption and N2 formation are illustrated during NO reduction with HCN and NH3, respectively. Additionally, we compare the performance of NO reduction by HCN and NH3 and propose control strategies for the pyrolysis and reburn processes. The study provides new insights into the mechanisms of the NO reduction with nitrogen-containing species in coal pyrolysis gas, which may help optimize the operating parameters of the splitting and staging processes to decrease NOx emissions during coal combustion.  相似文献   

12.
Pyrolysis experiments on n-heptane, 1-heptene and 1,6-heptadiene have been performed using the UIC High-Pressure Shock Tube (HPST) at pressures relevant to diesel combustion systems. The experimental pressures for these experiments ranged from 25 to 50 atm and temperatures varied from 1000 to 1350 K with reaction times ranging from 1 to 3 ms. Dilute reagent mixtures ∼100 ppm were prepared in bulk argon and shock heated to study the stable intermediates. The experimental data has been used to develop and validate an updated kinetic model for the pyrolysis of saturated and unsaturated C7 hydrocarbons. The experimental results and their implication on increased NO emissions from biodiesel blends will also be discussed.  相似文献   

13.
The aim of this work is to discuss a lumped approach to the kinetic modeling of the pyrolysis and oxidation of biodiesel fuels, i.e. rapeseed and soybean methyl esters. The lumped model is the natural extension of the kinetic scheme of methyl butanoate and methyl decanoate and takes also a great advantage from the detailed kinetic scheme of biodiesel fuels [Westbrook et al. Combustion and Flame 158 (2011) 742–755]. The combustion of methyl palmitate and methyl stearate is very similar to the one of methyl decanoate, while large unsaturated methyl esters are significantly less reactive at low and intermediate temperatures. The formation of resonantly stabilized allylic radicals from unsaturated methyl esters constitutes a critical element very useful to characterize the reactivity of the different fuels. The extension of the previous kinetic model of hydrocarbon and oxygenated fuel combustion to the methyl esters required the introduction of ~60 lumped species and ~2000 reactions. The dimension of the overall kinetic scheme (~420 species involved in ~13,000 reactions) allows a more flexible and direct application of the model without the need of kinetic reductions. The comparison of model predictions and different sets of experimental data from one side allows to verify the reliability of the proposed model, from the other side calls for further experimental and theoretical work on this subject.  相似文献   

14.
Oxyfuel combustion is one of the promising carbon capture and storage (CCS) technologies for coal-fired boilers. In oxyfuel combustion, combustion gas is oxygen and recirculating flue gas (FGR) and main component of combustion gas is O2, CO2 and H2O rather than O2, N2 in air combustion. Fundamental researches showed that flame temperature and flame propagation velocity of pulverized cloud in oxyfuel combustion are lower than that in air with the same O2 concentration due to higher heat capacity of CO2. IHI pilot combustion test showed that stable burner combustion was obtained over 30% O2 in secondary combustion gas and the same furnace heat transfer as that of air firing at 27% O2 in overall combustion gas. Compared to emissions in air combustion, NOx emission per unit combustion energy decreased to 1/3 due to reducing NOx in the FGR, and SOx emission was 30% lower. However SOx concentration in the furnace for the oxyfuel mode was three to four times greater than for the air mode due to lower flow rate of exhaust gas. The higher SO3 concentration results that the sulphuric acid dew point increases 15–20 °C compared to the air combustion. These results confirmed the oxyfuel pulverized coal combustion is reliable and promising technology for coal firing power plant for CCS.In 2008, based on R&D and a feasibility study of commercial plants, the Callide Oxyfuel Project was started in order to demonstrate entire oxyfuel CCS power plant system for the first time in the world. The general scope and progress of the project are introduced here. Finally, challenges for present and next generation oxyfuel combustion power plant technologies are addressed.  相似文献   

15.
Ultrasound assisted intensification of synthesis of biodiesel from waste cooking oil using methyl acetate and immobilized lipase obtained from Thermomyces lanuginosus (Lipozyme TLIM) as a catalyst has been investigated in the present work. The reaction has also been investigated using the conventional approach based on stirring so as to establish the beneficial effects obtained due to the use of ultrasound. Effect of operating conditions such as reactant molar ratio (oil and methyl acetate), temperature and enzyme loading on the yield of biodiesel has been investigated. Optimum conditions for the conventional approach (without ultrasound) were established as reactant molar ratio of 1:12 (oil:methyl acetate), enzyme loading of 6% (w/v), temperature of 40 °C and reaction time of 24 h and under these conditions, 90.1% biodiesel yield was obtained. The optimum conditions for the ultrasound assisted approach were oil to methyl acetate molar ratio of 1:9, enzyme loading of 3% (w/v), and reaction time of 3 h and the biodiesel yield obtained under these conditions was 96.1%. Use of ultrasound resulted in significant reduction in the reaction time with higher yields and lower requirement of the enzyme loading. The obtained results have clearly established that ultrasound assisted interesterification was a fast and efficient approach for biodiesel production giving significant benefits, which can help in reducing the costs of production. Reusability studies for the enzyme were also performed but it was observed that reuse of the catalyst under the optimum experimental condition resulted in reduced enzyme activity and biodiesel yield.  相似文献   

16.
A multicomponent vaporization model is integrated with detailed fuel chemistry and soot models for simulating biodiesel–diesel spray combustion. Biodiesel, a fuel mixture comprised of fatty-acid methyl esters, is an attractive alternative to diesel fuel for use in compression-ignition engines. Accurately modelling of the spray, vaporization, and combustion of the fuel mixture is critical to predicting engine performance using biodiesel. In this study, a discrete-component vaporization model was developed to simulate the vaporization of biodiesel drops. The model can predict differences in the vaporization rates of different fuel components. The model was validated by use of experimental data of the measured biodiesel drop size history and spray penetration data obtained from a constant-volume chamber. Gas phase chemical reactions were simulated using a detailed reaction mechanism that also includes PAH reactions leading to the production of soot precursors. A phenomenological multi-step soot model was utilized to predict soot emissions from biodiesel–diesel combustion. The soot model considered various steps of soot formation and destruction, such as soot inception, surface growth, coagulation, and PAH condensation, as well as oxidation by oxygen and hydroxyl-containing molecules. The overall numerical model was validated with experimental data on flame structure and soot distributions obtained from a constant-volume chamber. The model was also applied to predict combustion, soot and NOx emissions from a diesel engine using different biodiesel–diesel blends. The engine simulation results were further analysed to determine the soot emissions characteristics by use of biodiesel–diesel fuels.  相似文献   

17.
生物柴油发动机非常规排放的FTIR检测   总被引:1,自引:0,他引:1  
采用傅里叶变换红外光谱FTIR,研究了汽车发动机燃用生物柴油的非常规排放物。所用燃料分别为纯柴油、纯生物柴油、生物柴油掺混比为20%的B20混合燃料。结果表明,该机燃用纯柴油和B20燃油的甲醛排放差别不大,纯生物柴油的甲醛排放则明显高于柴油。燃用B20燃油的乙醛排放略低于纯柴油;纯生物柴油的乙醛排放在中低负荷低于纯柴油,在高负荷时高于柴油及B20燃油。燃用B20燃油和纯生物柴油的丙酮排放要高于柴油,但排放量均较低。随着生物柴油掺混比例的增加,发动机甲苯和二氧化硫均呈逐渐下降趋势,纯生物柴油的二氧化硫排放大幅降低。燃用生物柴油后,发动机的二氧化碳排放有所降低,表明了生物柴油有利于温室气体的控制。  相似文献   

18.
The catalytic-rich/gaseous-lean (R/L) combustion concept was investigated experimentally and numerically for syngas fuels with H2:CO volumetric ratios 1:0, 4:1 and 1:2, catalytic-rich stoichiometries φrich = 2–10 (including operation without air), pressure of 8 bar and air preheat of 673 K. Experiments were performed in a subscale R/L burner with optical access to both catalytic-rich and gaseous-lean stages. OH-PLIF monitored the turbulent combustion in the gaseous-lean stage, OH*-chemiluminescence assessed the propensity for homogeneous ignition in the catalytic-rich stage, and exhaust gas analysis provided the NOx and CO emissions. Two-dimensional simulations were carried out for both stages, while a 1-D opposed-jet code modeled the NOx emissions. The exothermicity of the heterogeneous reactions promoted homogeneous ignition and flame anchoring in the upstream parts of the catalytic-rich stage and allowed for complete consumption of the deficient O2 reactant, a process that could not be achieved by the catalytic pathway alone due to transport limitations. Homogeneous combustion in the catalytic-rich stage was beneficial for attaining the highest possible fuel pre-conversion. The catalyst not only initiated gaseous combustion but also mitigated potential NOx emissions from the catalytic-rich stage at the highest pre-conversions (lowest φrich) and highest CO-content mixtures. Two-sided diffusion flames were established in the gaseous-lean stage due to the recirculation of O2-rich combustion products, which was advantageous for the burner compactness. It was shown that cardinal to the R/L concept was the fact that a decreasing φrich led to an increased heat transfer from the catalytic-rich stage to the bypass air, which reduced the enthalpy in the fuel stream of the gaseous-lean stage and thus lowered the peak flame temperatures (by 400 K for H2:CO = 1:0). The reduction in flame temperatures with decreasing φrich led to a six-fold drop in NOx emissions, while CO emissions were less than 5 ppmv.  相似文献   

19.
Surrogate fuels aim to reproduce real fuel combustion characteristics in order to enable predictive simulations and fuel/engine design. In this work, surrogate mixtures were formulated for three diesel fuels (Coryton Euro and Coryton US-2D certification grade and Saudi pump grade) and two jet fuels (POSF 4658 and POSF 4734) using the minimalist functional group (MFG) approach, a method recently developed and tested for gasoline fuels. The diesel and jet fuel surrogates were formulated by matching five important functional groups, while minimizing the surrogate components to two species. Another molecular parameter, called as branching index (BI), which denotes the degree of branching was also used as a matching criterion. The present works aims to test the ability of the MFG surrogate methodology for high molecular weight fuels (e.g., jet and diesel). 1H Nuclear Magnetic Resonance (NMR) spectroscopy was used to analyze the composition of the groups in diesel fuels, and those in jet fuels were evaluated using the molecular data obtained from published literature. The MFG surrogates were experimentally evaluated in an ignition quality tester (IQT), wherein ignition delay times (IDT) and derived cetane number (DCN) were measured. Physical properties, namely, average molecular weight (AMW) and density, and thermochemical properties, namely, heat of combustion and H/C ratio were also compared. The results show that the MFG surrogates were able to reproduce the combustion properties of the above fuels, and we demonstrate that fewer species in surrogates can be as effective as more complex surrogates. We conclude that the MFG approach can radically simplify the surrogate formulation process, significantly reduce the cost and time associated with the development of chemical kinetic models, and facilitate surrogate testing.  相似文献   

20.
Spray, ignition and combustion characteristics of biodiesel fuels were investigated under a simulated diesel-engine condition (885 K, 4 MPa) in a constant volume combustion vessel. Two biodiesel fuels originated from palm oil and used cooking oil were used while JIS#2 used as the base fuel. Spray images were taken by a high speed video camera by using Mie-scattering method to measure liquid phase penetration and liquid length. An image intensifier combined with OH filter was used to obtain OH radical image near 313 nm. Ignition and combustion characteristics were studied by OH radical images. Biodiesel fuels give appreciably longer liquid lengths and shorter ignition delays. At low injection pressure (100 MPa), biodiesel fuels give shorter lift-off lengths than those of diesel. While at high injection pressure (200 MPa), the lift-off length of biodiesel fuel originated palm oil gives the shortest value and that of biodiesel from used cooking oil gives the longest one. Air entrainment upstream of lift-off length of three fuels was estimated and compared to soot formation distance. This study reveals that the viscosity and ignition quality of biodiesel fuel have great influences on jet flame structure and soot formation tendency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号