首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel type adsorbent was prepared by in situ precipitation of Fe(OH)3 on the surface of activated Al2O3 as a support material. The iron content of the adsorbent was 0.31+/-0.003% m/m (56.1 mmol/g); its mechanical and chemical stability proved to be appropriate in solutions. The total capacity of the adsorbent was 0.12 mmol/g, and the pH of zero point of charge, pH(zpc) = 6.9+/-0.3. Depending on the pH of solutions, the adsorbent can be used for binding of both anions and cations, if pH(eq) < pH(zpc) anions are sorbed on the surface of adsorbent (S) through [SOH2+] and [SOH] groups. A graphical method was used for the determination of pH(iep) (isoelectric points) of the adsorbent and values of pH(iep) = 6.1+/-0.3 for As(III) and pH(iep) = 8.0+/-0.3 for As(V) ions were found. The amount of surface charged groups (Q) was about zero within the a pH range of 6.5-8.6, due to the practically neutral surface formed on the adsorption of As(V) ions. At acidic pH (pH 4.7), Q = 0.19 mol/kg was obtained. The adsorption of arsenate and arsenite ions from solutions of 0.1-0.4 mmol/L was represented by Langmuir-type isotherms. A great advantage of the adsorbent is that it can be used in adsorption columns, and low waste technology for removal of arsenic from drinking water can be developed.  相似文献   

2.
The adsorption characteristics of As(V) and As(III) on titanium dioxide loaded Amberlite XAD-7 resin have been studied. The resin was prepared by impregnation of Ti(OC2H5)4 followed by hydrolysis with ammonium hydroxide. Batch adsorption experiments were carried out as a function of the pH, shaking time and the concentration of As(V) and As(III) ions. The resin showed a strong adsorption for As(V) from pH 1 to 5 and for As(III) from pH 5 to 10. The adsorption isotherm data for As(V) at pH 4 fitted well to a Langmuir equation with a binding constant of 59 dm3 mol(-1) and a capacity constant of 0.063 mmol g(-1). The data for As(III) at pH 7 also fitted well to a Langmuir equation with a binding constant of 5.4 dm3 mol(-1) and a capacity constant of 0.13 mmol g(-1). The effect of diverse ions on the adsorption of arsenic was also studied. Column adsorption experiments showed that the adsorption of As(III) is more favorable compared to As(V), due to both the faster adsorption and larger capacity for As(III) than As(V).  相似文献   

3.
Coral limestones were treated with an aqueous solution of aluminium sulfate and thereby aluminium-loaded coral limestones (Al-CL) were prepared. By use of Al-CL as an adsorbent, the adsorption of inorganic arsenic compounds (arsenate [As(V)] and arsenite [As(III)] and of organic arsenic compounds (methylarsonic acid, dimethylarsinic acid, and arsenobetaine) was examined. The adsorption ability of Al-CL is superior to that of iron(III)-loaded coral limestone (Fe-CL) for As(V), As(III), methylarsonic acid and dimethylarsinic acid. The adsorption of As(V) and As(III) is almost independent of the initial pH over a wide range (2 or 3 to 11). The addition of other anions, such as chloride, nitrate, sulfate and acetate, in the solution does not affect the adsorption of As(V) and As(III), whereas the addition of phosphate greatly interferes with the adsorption. Arsenic adsorption is effectively applied to a column-type operation and the adsorption capability for As(V) is 150 μg/g coral limestone.  相似文献   

4.
Arsenic retention on natural red earth (hereafter NRE) was examined as a function of pH, ionic strength, and initial arsenic loading using both macroscopic and spectroscopic methods. Proton binding sites on NRE were characterized by potentiometric titrations yielding an average pH(zpc) around 8.5. Both As(III)- and As(V)-NRE surface configurations were postulated by vibration spectroscopy. Spectroscopically, it is shown that arsenite forms monodentate complexes whereas arsenate forms bidendate complexes with NRE. When 4相似文献   

5.
This paper reports on the behavior of arsenite [As(III)] and arsenate [As(V)] in some water samples at storage under several conditions (pH=2/natural pH, 4°C/20°C). The investigation was carried out using73As as a radiotracer for both forms and with the aid of earlier developed simple speciation methods for differentiation between arsenite and arsenate. Although arsenate is the thermodynamically stable arsenic form, it was observed that arsenate in deionized water is completely converted to the trivalent state; this phenomenon took place in about one week. By monitoring the radioactive As(III) and As(V) over a period of one month in two natural water samples, a fresh water and a sea water sample, it could be concluded that no adsorption occurs on the surface of polyethylene containers, independent of storage conditions. During that period, storage at natural pH values results for both water samples in a gradual oxidation of As(III); the oxidation rate is higher for storage at 20°C. At pH=2 As(III) is fairly stable in fresh water at both storage temperatures. However, in sea water a fast oxidation of As(III) is observed (complete oxidation within 3 d at both temperatures). As(V) is stable at all storage conditions studied.  相似文献   

6.
Arsenic species can be removed from aqueous solutions using the liquid-phase polymer-based retention, LPR, technique. The LPR technique removes ionic species by functional groups of water-soluble polyelectrolytes (WSP) and then using a ultrafiltration membrane that does not let them pass through the membrane, thus separating them from the solution. The ability of WSP with groups (R)4N+X to remove arsenate ions using LPR was studied. The interaction and arsenate anion retention capacity depended on: pH, the quaternary ammonium group's counter ion, and the ratio polymer: As(V), using different concentrations of As(V). Water-soluble polychelates were also used for one-step retention of As(III) in solution. The complex of poly(acrylic acid)-Sn, 10 and 20 wt-% of metal gave a high retention of As(III) species at pH 8, although the molar ratio polychelate: As(III) was 400:1. The enrichment method was used to determine the maximum retention capacity (C) for arsenate anions in aqueous solutions at pH 8. In similar conditions, the values of C were 142 mg g−1 for P(ClAETA) and 75 mg g−1 for P(SAETA). The combined treatment of arsenic aqueous solutions by electrocatalytic oxidation (EO) to convert the species of As(III) to As(V) with the LPR technique quantitatively removed arsenic.  相似文献   

7.
A pre-oxidation procedure which converts arsenite [As(III)] into arsenate [As(v)] was investigated in urinary arsenic speciation prior to on-line photo-oxidation hydride generation with ICP-MS detection. This sample pre-oxidation method eliminates As(III) and As(v) preservation concerns and simplifies the chromatographic separation. Four oxidants, Cl2, MnO2, H2O2 and I3-, were investigated. Chlorine (ClO-aq) and MnO2 selectively converted As(III) into As(v) in pure water samples, but the conversion was inefficient in the complex urine matrix. Oxidation of As(III) by H2O2 was least affected by the urine matrix, but the removal of excess H2O2 at pH 10 proved difficult. The most appropriate oxidant for the selective conversion of As(III) into As(v) with minimal interference from the urine matrix is I3- at pH 7. Unlike H2O2, excess oxidant can be easily removed by the addition of S2O3(2-). The I3-(-)S2O3(2-) treatment on a fortified sample of reconstituted NIST SRM 2670 freeze dried urine indicated that arsenobetaine (AsB), dimethlyarsinic acid (DMA), monomethylarsonic acid (MMA) and As(v) were not chemically degraded with recoveries ranging from 95 to 102% for all arsenicals. Sample clean-up involved pH adjustment prior to C18 filtration in order to achieve efficient As(III) conversion and quantitative recoveries of AsB and DMA. The concentrations determined in NIST SRM 2670 freeze dried urine were AsB 17.2 +/- 0.5, DMA 56 +/- 4 and MMA 10.3 +/- 0.3 with a combined total of 83 +/- 5 micrograms L-1 (+/- 2 sigma).  相似文献   

8.
Adsorption of arsenic on clay surfaces is important for the natural and simulated removal of arsenic species from aqueous environments. In this investigation, three samples of clay minerals (natural metakaoline, natural clinoptilolite-rich tuff, and synthetic zeolite) in both untreated and Fe-treated forms were used for the sorption of arsenate from model aqueous solution. The treatment of minerals consisted of exposing them to concentrated solution of Fe(II). Within this process the mineral surface has been laden with Fe(III) oxi(hydroxides) whose high affinity for the As(V) adsorption is well known. In all investigated systems the sorption capacity of Fe(II)-treated sorbents increased significantly in comparison to the untreated material (from about 0.5 to >20.0 mg/g, which represented more than 95% of the total As removal). The changes of Fe-bearing particles in the course of treating process and subsequent As sorption were investigated by the diffuse reflectance spectroscopy and the voltammetry of microparticles. IR spectra of treated and As(V)-saturated solids showed characteristic bands caused by Fe(III)SO(4), Fe(III)O, and AsO vibrations. In untreated As(V)-saturated solids no significant AsO vibrations were observed due to the negligible content of sorbed arsenate.  相似文献   

9.
The stability of arsenic species (arsenate [As(V)], monomethylarsonate [MMA], dimethylarsinate [DMA] and arsenite [As(III)]) in two types of urban wastewater samples (raw and treated) was evaluated. Water samples containing a mixture of the different arsenic species were stored in the absence of light at three different temperatures: +4 degrees C, +20 degrees C and +40 degrees C. At regular time intervals, arsenic species were determined by high performance liquid chromatography (HPLC)-hydride generation (HG)-atomic fluorescence spectrometry (AFS). The experimental conditions for the separation of arsenic species by HPLC and their determination by AFS were directly optimised from wastewater samples. As(III), As(V), MMA and DMA were separated on an anion exchange column using phosphate buffer (pH 6.0) as the mobile phase. Under these conditions the four arsenic species were separated in less than 10 min. The detection limits were 0.6, 0.9, 0.9 and 1.8 micro g L(-1) for As(III), DMA, MMA and As(V), respectively. As(V), MMA and DMA were found stable in the two types of urban wastewater samples over the 4-month period at the three different temperatures tested, while the concentration of As(III) in raw wastewater sample decreased after 2 weeks of storage. A greater stability of As(III) was found in the treated urban wastewater sample. As(III) remained unaltered in this matrix at pH 7.27 over the period studied, while at lower pH (1.6) losses of As(III) were detected after 1 month of storage. The results show that the decrease in As(III) concentration with time was accompanied by an increase in As(V) concentration.  相似文献   

10.
Adsorption methods have been developed for the removal of arsenic from solution motivated by the adverse health effects of this naturally occurring element. Iron exchanged natural zeolites are promising materials for this application. In this study we introduced iron species into a clinoptilolite-rich zeolitic tuff by the liquid exchange method using different organic and inorganic iron salts after pretreatment with NaCl and quantified the iron content in all trials by XRF spectroscopy. The materials were characterized by XRD, FTIR, FTIR-DR, UV-vis, cyclic voltammetry, ESR and M?ssbauer spectroscopies before and after adsorption of arsenite and arsenate. The reached iron load in the sample T+Fe was %Fe(2)O(3)-2.462, n(Fe)/n(Al)=0.19, n(Si)/n(Fe)=30.9 using FeCl(3), whereby the iron leachability was 0.1-0.2%. The introduced iron corresponded to four coordinated species with tetrahedral geometry, primarily low spin ferric iron adsorbing almost 12 mug g(-1) arsenite (99% removal) from a 360 mug(As(III)) L(-1) and 6 mug g(-1) arsenate from a 230 mug(As(V)) L(-1). Adsorption of arsenite and arsenate reached practically a plateau at n(Fe)/n(Si)=0.1 in the series of exchanged tuffs. The oxidation of arsenite to arsenate in the solution in contact with iron modified tuff during adsorption was observed by speciation. The reduction of ferric iron to ferrous iron could be detected in the electrochemical system comprising an iron-clinoptilolite impregnated electrode and was not observed in the dried tuff after adsorption.  相似文献   

11.
Arsenate [As(V)] and arsenite [As(III)] sorption at the solid-water interface of activated carbon impregnated with zirconyl nitrate (Zr-AC) was investigated using X-ray absorption spectroscopy (XAS) and surface complexation modeling. The XAS data at the Zr K-edge suggest that the structure of the zirconyl nitrate coating is built from chains of edge-sharing ZrO8 trigonal dodecahedra bound to each other through two double hydroxyl bridges. The 8-fold coordination of each Zr atom is completed by four O atoms, which share a bit less than the two theoretically possible bidentate nitrate groups. On impregnation, two of the O atoms may lose their nitrate group and be transformed to hydroxyl groups ready for binding to carboxylic or phenolic ligands at the AC surface. As K-edge XANES results showed the presence of only As(V) on adsorption regardless of the initial As oxidation state. Oxidation to As(V) is probably mediated by available carbon species on the AC surface as found by batch titration. Zr K-edge EXAFS data indicate that arsenate tetrahedra form monodentate mononuclear surface complexes with free hydroxyl groups of zirconyl dodecahedra, whereby each bidentate nitrate group is exchanged by up to two arsenate groups. The inner-sphere arsenate binding to the Zr-AC surface sites constrained with the spectroscopic results was used in the formulation of a surface complexation model to successfully describe the adsorption behavior of arsenate in the pH range between 4 and 12. The results suggest therefore that Zr-AC is an effective adsorbent for arsenic removal due to its high surface area and the presence of high affinity surface hydroxyl groups.  相似文献   

12.
We investigated the As(III) and As(V) adsorption complexes forming at the gamma-Al(2)O(3)/water interface as a function of pH and ionic strength (I), using a combination of adsorption envelopes, electrophoretic mobility (EM) measurements, and X-ray absorption spectroscopy (XAS). The As adsorption envelopes show that (1) As(III) adsorption increases with increasing pH and is insensitive to I changes (0.01 and 0.8 M NaNO(3)) at pH 3-4.5, while adsorption decreases with increasing I between pH 4.5 and 9.0, and (2) As(V) adsorption decreases with increasing pH and is insensitive to I changes at pH 3.5-10. The EM measurements show that As(III) adsorption does not significantly change the EM values of gamma-Al(2)O(3) suspension in 0.1 M NaNO(3) at pH 4-8, whereas As(V) adsorption lowered the EM values at pH 4-10. The EXAFS data indicate that both As(III) and As(V) form inner-sphere complexes with a bidentate binuclear configuration, as evidenced by a As(III)-Al bond distance of congruent with3.22 ? and a As(V)-Al bond distance of congruent with3.11 ?. The As(III) XANES spectra, however, show that outer-sphere complexes are formed in addition to inner-sphere complexes and that the importance of outer-sphere As(III) complexes increases with increasing pH (5.5 to 8) and with decreasing I. In short, the data indicate for As(III) that inner- and outer-sphere adsorption coexist whereas for As(V) inner-sphere complexes are predominant under our experimental conditions. Copyright 2001 Academic Press.  相似文献   

13.
The adsorption of arsenic(V) was investigated using macroporous resin beads containing magnetite crystals. Arsenic(V) was favorably adsorbed at pH 2-9, where the distribution coefficients were larger than 10(3). The maximum capacity was 0.050 mmol/g. Metal cations including Ca(II), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and La(III) did not give serious interference at 10(-4) M level. Diluted arsenic(V) was collected with a packed column, and the retained arsenic(V) was quantitatively eluted out with 1 M NaOH.  相似文献   

14.
A novel method for speciation analysis of inorganic arsenic was developed by on-line hyphenating microchip capillary electrophoresis (chip-CE) with hydride generation atomic fluorescence spectrometry (HG-AFS). Baseline separation of As(III) and As(V) was achieved within 54 s by the chip-CE in a 90 mm long channel at 2500 V using a mixture of 25 mmol l(-1) H3BO3 and 0.4 mmol l(-1) CTAB (pH 8.9) as electrolyte buffer. The precisions (RSD, n=5) ranged from 1.9 to 1.4% for migration time, 2.1 to 2.7% for peak area, and 1.8 to 2.3% for peak height for the two arsenic species at 3.0 mg l(-1) (as As) level. The detection limits (3sigma) for As(III) and As(V) based on peak height measurement were 76 and 112 microg l(-1) (as As), respectively. The recoveries of the spikes (1 mg l(-1) (as As) of As(III) and As(V)) in four locally collected water samples ranged from 93.7 to 106%.  相似文献   

15.
A high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry (HPLC-MW-HG-AAS) coupled method is described for As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC) determination. A Hamilton PRP-X100 anion-exchange column is used for carrying out the arsenic species separation. As mobile phase 17 mM phosphate buffer (pH 6.0) is used for As(III), As(V), MMA and DMA separation, and ultrapure water (pH 6.0) for AsB and AsC separation. Prior to injection into the HPLC system AsB and AsC are isolated from the other arsenic species using a Waters Accell Plus QMA cartridge. A microwave digestion with K(2)S(2)O(8) as oxidizing agent is used for enhancing the efficiency of conversion of AsB and AsC into arsenate. Detection limits achieved were between 0.3 and 1.1 ng for all species. The method was applied to arsenic speciation in fish samples.  相似文献   

16.
Lanthanum modified materials have been widely used for the removal of hazardous anions.In this study,in situ ATR-FTIR and two-dimensional correlation analysis were employed to investigate the adsorption mechanism of arsenate(As(V)) on lanthanum-impregnated activated alumina(LAA).Our results showed that electrostatic interaction attracted As(V) anions to the LAA surface,and then As(V) could form monodentate configuration on the LAA surface at pH 5-9.The result of 2D-COS showed that two coexistent adsorbed As(V) species,H2AsO4- and HAsO42-,were adsorbed on the LAA surface without specific sequence at different pH conditions,indicating a negligible role of the incorporated protons of As(V) on the adsorption affinity to LAA surface.The results of this study reveal insights into LAA surface complexes on the molecular scale and provide theoretical support to new metal oxides design for efficient arsenic removal.  相似文献   

17.
P Zhang  G Xu  J Xiong  Y Zheng  O Yang  F Wei 《Electrophoresis》2001,22(16):3567-3572
Determination of arsenic species by large-volume field amplified stacking injection-capillary zone electrophoresis (LV-FASI-CZE) is reported in this paper. Whole column injection was employed. The optimum buffer pH for the separation of weak acids was discussed. It was found that the optimum buffer to analyze the stacked arsenate (As(V)), monomethylarsonate (MMA), and dimethylarsinate (DMA) was 25 mM phosphate at pH 6.5. However, the optimum buffer to analyze the concentrated arsenite (As(III)) was 20 mM phosphate - 10 mM borate at pH 9.28. The limits of detection of the method developed were 0.026 mg/L for As(III), 0.023 mg/L for As(V), 0.043 mg/L for MMA, and 0.018 mg/L for DMA. An enrichment factor of 34-100 for several arsenic species was obtained. In the end, this method was applied to determine the arsenic concentration in the environmental reference materials to show the usefulness of the method developed.  相似文献   

18.
Nguyen HT  Kubán P  Pham VH  Hauser PC 《Electrophoresis》2007,28(19):3500-3506
The determination of arsenic(III) and arsenic(V), as inorganic arsenite and arsenate, was investigated by CE with capacitively coupled contactless conductivity detection (CE-C(4)D). It was found necessary to determine the two inorganic arsenic species separately employing two different electrolyte systems. Electrolyte solutions consisting of 50 mM CAPS/2 mM L-arginine (Arg) (pH 9.0) and of 45 mM acetic acid (pH 3.2) were used for arsenic(III) and arsenic(V) determinations, respectively. Detection limits of 0.29 and 0.15 microM were achieved for As(III) and As(V), respectively by using large-volume injection to maximize the sensitivity. The analysis of contaminated well water samples from Vietnam is demonstrated.  相似文献   

19.
Arsenate retention, arsenite sorption and oxidation on the surfaces of Fe-Mn binary oxides may play an important role in the mobilization and transformation of arsenic, due to the common occurrence of these oxides in the environment. However, no sufficient information on the sorption behaviors of arsenic on Fe-Mn binary oxides is available. This study investigated the influences of Mn/Fe molar ratio, solution pH, coexisting calcium ions, and humic acids have on arsenic sorption by Fe-Mn binary oxides. To create Fe-Mn binary oxides, simultaneous oxidation and co-precipitation methods were employed. The Fe-Mn binary oxides exhibited a porous crystalline structure similar to 2-line ferrihydrite at Mn/Fe ratios 1:3 and below, whereas exhibited similar structures to δ-MnO(2) at higher ratios. The As(V) sorption maximum was observed at a Mn/Fe ratio of 1:6, but As(III) uptake maximum was at Mn/Fe ratio 1:3. However, As(III) adsorption capacity was much higher than that of As(V) at each Mn/Fe ratio. As(V) sorption was found to decrease with increasing pH, while As(III) sorption edge was different, depending on the content of MnO(2) in the binary oxides. The presence of Ca(2+) enhanced the As(V) uptake under alkaline pH, but did not significantly influence the As(III) sorption by 1:9 Fe-Mn binary oxide; whereas the presence of humic acid slightly reduced both As(V) and As(III) uptake. These results indicate that As(III) is more easily immobilized than As(V) in the environment, where Fe-Mn binary oxides are available as sorbents and they represent attractive adsorbents for both As(V) and As(III) removal from water and groundwater.  相似文献   

20.
For the removal of arsenic from marine products, iowaite was prepared and investigated to determine the optimal adsorption process of arsenic. Different chemical forms of arsenic (As(III), As(V)) with varying concentrations (0.15, 1.5, 5, 10, 15, and 20 mg/L) under various conditions including pH (3, 5, 7, 9, 11) and contact time (1, 2, 5, 10, 15, 30, 60, 120, 180 min) were exposed to iowaite. Adsorption isotherms and metal ions kinetic modeling onto the adsorbent were determined based on Langmuir, Freundlich, first- and second-order kinetic models. The adsorption onto iowaite varied depending on the conditions. The adsorption rates of standard solution, As(III) and As(V) exceeded 95% under proper conditions, while high complexity was noted with marine samples. As(III) and As(V) from Mactra veneriformis extraction all decreased when exposed to iowaite. The inclusion morphology and interconversion of organic arsenic limit adsorption. Iowaite can be efficiently used for inorganic arsenic removal from wastewater and different marine food products, which maybe other adsorbent or further performance of iowaite needs to be investigated for organic arsenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号