首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The elastoplastic state of thin cylindrical shells with two equal circular holes is analyzed with allowance made for finite deflections. The shells are made of an isotropic homogeneous material. The load is internal pressure of given intensity. The distribution of stresses along the hole boundary and in the stress concentration zone (when holes are closely spaced) is analyzed by solving doubly nonlinear boundary-value problems. The results obtained are compared with the solutions that allow either for physical nonlinearity (plastic strains) or geometrical nonlinearity (finite deflections) and with the numerical solution of the linearly elastic problem. The stresses near the holes are analyzed for different distances between the holes and nonlinear factors.Translated from Prikladnaya Mekhanika, Vol. 40, No. 10, pp. 107–112, October 2004.  相似文献   

2.
Elastoplastic analysis of thin-walled spherical shells with two identical circular openings is carried out with allowance for finite deflections. The shells are made of an isotropic homogeneous material and subjected to internal pressure of known intensity. The distributions of stresses (strains or displacements) along the contours of the openings and in the zone of their concentration are studied by solving doubly nonlinear boundary-value problems. The solution obtained is compared with the solutions that account for only physical nonlinearity (plastic deformations) and only geometrical nonlinearity (finite deflections) and with a numerical solution of the linearly elastic problem. The stress–strain state near the two openings is analyzed depending on the distance between the openings and the nonlinear factors accounted for  相似文献   

3.
The elastoplastic state of thin cylindrical shells weakened by two circular holes is analyzed. The centers of the holes are on the directrix of the shell. The shells are made of an isotropic homogeneous material and subjected to internal pressure of given intensity. The distribution of stresses along the hole boundaries and over the zone where they concentrate (when the distance between the holes is small) is analyzed using approximate and numerical methods to solve doubly nonlinear boundary-value problems. The data obtained are compared with the solutions of the physically nonlinear (plastic strains taken into account) and geometrically nonlinear (finite deflections taken into account) problems and with the numerical solution of the linearly elastic problem. The stress-strain state near the two holes is analyzed depending on the distance between them and the nonlinearities accounted for __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 11, pp. 88–95, November 2005.  相似文献   

4.
The elastoplastic state of thin spherical shells with an elliptic hole is analyzed considering that deflections are finite. The shells are made of an isotropic homogeneous material and subjected to internal pressure of given intensity. Problems are formulated and a numerical method for their solution with regard for physical and geometrical nonlinearities is proposed. The distribution of stresses (strains or displacements) along the hole boundary and in the zone of their concentration is studied. The results obtained are compared with the solutions of problems where only physical nonlinearity (plastic deformations) or geometrical nonlinearity (finite deflections) is taken into account and with the numerical solution of the linearly elastic problem. The stress—strain state in the neighborhood of an elliptic hole in a shell is analyzed with allowance for nonlinear factors __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 6, pp. 95–104, June 2005.  相似文献   

5.
Physically and geometrically nonlinear two-dimensional problems are formulated for multiply connected thin shells (weakened by several curvilinear holes). A technique and algorithm are proposed for their solution with allowance for elastoplastic strains and finite deflections of shells under static loading. Numerical results for a shell with two circular holes are presented and the stress concentration is analyzed  相似文献   

6.
The elastoplastic state of thin cylindrical shells weakened by a curvilinear (circular) hole is analyzed considering finite deflections. The shells are made of an isotropic homogeneous material. The load is internal pressure of given intensity. The distributions of stresses (strains, displacements) along the hole boundary and in the zone of their concentration are studied. The results obtained are compared with solutions that account for physical (plastic strains) or geometrical (finite deflections) nonlinearity alone and with a numerical linear elastic solution. The stress-strain state around a circular hole is analyzed for different geometries in the case where both nonlinearities are taken into account __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 12, pp. 115–123, December, 2006.  相似文献   

7.
The elastoplastic state of isotropic homogeneous cylindrical shells with elliptic holes and finite deflections under internal pressure is studied. Problems are formulated and numerically solved taking into account physical and geometrical nonlinearities. The distribution of stresses (displacements, strains) along the boundary of the hole and in the zone of their concentration is analyzed. The data obtained are compared with the numerical solutions of the physically nonlinear, geometrically nonlinear, and linear problems. The stress-strain state of cylindrical shells in the neighborhood of the elliptic hole is analyzed with allowance for nonlinear factors __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 5, pp. 46–54, May 2007.  相似文献   

8.
Results on stress concentration in thin shells with curvilinear holes subject to plastic deformation and finite deflections are reviewed. The holes (circular, elliptical) are reinforced with thin-walled elements (rings, rods) of different stiffness. A numerical method of solving doubly nonlinear problems of statics for shells of complex geometry is outlined. The stress distribution near curvilinear holes in spherical, cylindrical, and conical shells under statical loading is studied. The numerical results are analyzed  相似文献   

9.
The elastoplastic state of thin conical shells with a curvilinear (circular) hole is analyzed assuming finite deflections. The distribution of stresses, strains, and displacements along the hole boundary and in the zone of their concentration are studied. The stress-strain state around a circular hole in shells subject to internal pressure of prescribed intensity is analyzed taking into account two nonlinear factors __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 4, pp. 73–79, April 2007.  相似文献   

10.
The elastoplastic state of thin conical shells with a circular hole is analyzed assuming finite deflections. The distributions of stresses, strains, and displacements along the hole boundary and in the zone of their concentration are studied. The stress–strain state of shells around the hole under axial tension is analyzed taking into account two nonlinear factors. The numerical results are presented as plots and tables  相似文献   

11.
The elastoplastic state of conical shells weakened by an elliptic hole and subjected to finite deflections is studied. The material of the shells is assumed to be isotropic and homogeneous; the load is constant internal pressure. The problem is formulated and a technique for numerical solution with allowance for physical and geometrical nonlinearities is proposed. The distribution of stresses, strains, and displacements along the hole boundary and in the zones of their concentration is studied. The solution obtained is compared with the solutions of the physically and geometrically nonlinear problems and a numerical solution of the linear elastic problem. The stress-strain state around an elliptic hole in a conical shell is analyzed considering both nonlinearities __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 2, pp. 69–77, February 2008.  相似文献   

12.
Problems of nonlinear cylindrical bending of sigmoid functionally graded plates in which material properties vary through the thickness are considered. The variation of the material properties follows two power-law distributions in terms of the volume fractions of constituents. The nonlinear strain-displacement relations in the von Kármán sense are used to study the effect of geometric nonlinearity. The governing equations are reduced to a linear differential equation with nonlinear boundary conditions, yielding a simple solution procedure. Numerical results are presented to show the effect of the material distribution on the deflections and stresses.  相似文献   

13.
Nonlinear behavior of composite sandwich beams in three-point bending   总被引:1,自引:0,他引:1  
The load-deflection behavior of a composite sandwich beam in three-point bending was investigated. The beam was made of unidirectional carbon/epoxy facings and a polyvinyl chloride closed-cell foam core. The load-deflection curves were plotted up to the point of failure initiation. They consist of an initial linear part followed by a nonlinear portion. A nonlinear mechanics of materials analysis that accounts for the combined effect of the nonlinear behavior of the facings and core materials (material nonlinearity) and the large deflections of the beam (geometric nonlinearity) was developed. The theoretical predictions were in good agreement with the experimental results. It was found that the effect of material nonlinearity on the deflection of the beam is more pronounced for shear-dominated core failures in the case of short span lengths. It is due to the nonlinear shear stress-strain behavior of the core. For long span lengths, the observed nonlinearity is small and is attributed to the combined effect of the facings nonlinear stress-strain behavior and the large deflections of the beam.  相似文献   

14.
研究了具有初始小挠度受轴向压载黏弹性板的蠕变屈曲问题,在建立控制方程时,利用了von Karman非线性应变-位移关系,并考虑了初始挠度,用标准线性固体模型描述材料的黏弹性特性,在求解非线性积分方程时,利用梯形公式计算记忆积分式,将非线性积分方程化为非线性代数方程进行数值求解,得到了结构的蠕变变形过程,又将问题退化到小挠度情况进行研究,得到了挠度随时间扩展的解析解,分析了瞬时失稳临界载荷、持久临界载荷的物理意义,讨论了考虑几何非线性对黏弹性板蠕变屈曲的影响。  相似文献   

15.
Nonlinear dynamics of an inclined beam subjected to a moving load   总被引:1,自引:0,他引:1  
In this paper, the nonlinear dynamic response of an inclined pinned-pinned beam with a constant cross section, finite length subjected to a concentrated vertical force traveling with a constant velocity is investigated. The study is focused on the mode summation method and also on frequency analysis of the governing PDEs equations of motion. Furthermore, the steady-state response is studied by applying the multiple scales method. The nonlinear response of the beam is obtained by solving two coupled nonlinear PDEs governing equations of planar motion for both longitudinal and transverse oscillations of the beam. The dynamic magnification factor and normalized time histories of mid-pint of the beam are obtained for various load velocity ratios and the outcome results have been illustrated and compared to the results with those obtained from traditional linear solution. The appropriate parametric study considering the effects of the linear viscous damping, the velocity of the traveling load, beam inclination angle under zero or nonzero axial load are carried out to capture the influence of the effect of large deflections caused by stretching effects due to the beam’s immovable ends. It was seen that quadratic nonlinearity renders the softening effect on the dynamic response of the beam under the act of traveling load. Also in the case where the object leaves the inclined beam, its planar motion path is derived and the targeting accuracy is investigated and compared with those from the rigid solution assumption. Moreover, the stability analysis of steady-state response for the modes equations having quadratic nonlinearity was carried out and it was observed from the frequency response curves that for the considered parameters in the case of internal-external primary resonance, both saturation phenomenon and jump phenomenon can be predicted for the longitudinal excitation.  相似文献   

16.
The elastoplastic state of cylindrical shells with a circular hole is studied considering finite deflections. The material of the shells is isotropic and homogeneous; the load is axial tension. The distribution of stresses, strains, and displacements along the hole boundary and in the zone of their concentration is studied by solving a doubly nonlinear problem. The data obtained are compared with the solutions of the physically and geometrically nonlinear problems and a numerical solution of the linear elastic problem __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 7, pp. 101–109, July 2008.  相似文献   

17.
The mechanics of the fluid–structure interaction between a thin flexible web, wrapped around a cylindrical drum (reverser), and the air cushion formed by external pressurization through the holes of this drum is analyzed. Derivation of a “new” theory for the moderately large deflections of a thin cylindrical shell to model the web is presented. This theory allows for large web deflections, while using a self-adjusting strain-free reference state for the web in order to keep the circumferential web tension around a constant level. The theory also incorporates the redistribution of the in-plane stress resultants in the axial and shear directions using the Airy stress function. The air-flow is averaged over the height direction of the web-reverser clearance. The surface area of the pressure holes is averaged locally over the total reverser surface. The resulting equations are a modified form of the Navier–Stokes and mass balance equations with nonlinear source terms. The coupled fluid–structure system is solved numerically. The mechanics of the interaction between the web deflections and the air cushion generated by the reverser is explained. The effects of the problem parameters on the overall equilibrium are presented. Parameter distributions which cause the web to contact the reverser are identified, and suggestions are made to avoid this state.  相似文献   

18.
The state of stress and strain of previously loaded viscoelastic bodies with holes originating in them, successively or simultaneously, is analyzed under finite plane deformations. The problem statement and solution are based on the theory of repeatedly superimposed large deformations. The material mechanical properties are described using integral relations of the convolution type over time with a weakly singular kernel. The problem solving is based on the finite-element method. To calculate the integral of the convolution type, a recurrence formula is used that can be obtained by approximating the initial kernel with a linear combination of exponential functions (the truncated Prony’s series). The nonlinear effects and the effect of the interaction between holes on the stress concentration are analyzed. For the dynamic problems, the results for incompressible and weakly compressible materials are compared.  相似文献   

19.
The effect of pre-buckling nonlinearity on the bifurcation point of a conical shell is examined on the basis of three shell theories: Donnell’s, Sanders’ and Timoshenko’s. The eigenvalue problem is solved iteratively about the nonlinear equilibrium state up to the bifurcation point. A new algorithm is presented for the real buckling behavior, dispensing with the need to cover the entire nonlinear pattern. This algorithm is very important for structures characterized by a softening process, in which the pre-buckling nonlinearity depresses the buckling level relative to the classical one.The procedure involves nonlinear partial differential equations, which are separated into two sets (using the perturbation technique) for the pre-buckling and buckling states, respectively and solved with the variable expanded in Fourier series in the circumferential direction, and by finite differences in the axial direction. A general computer code was developed and used in studying the effect of the pre-buckling nonlinearity on the buckling level, of the shell under axial compression, in the context of the three shell theories.  相似文献   

20.
An approximate solution is presented for the postbuckling problem of cross-ply laminated plates having elastically restrained edges and initial imperfections. By the method of Bubnov-Galerkin the governing nonlinear differential equations are reduced to a system of simultaneous nonlinear ordinary algebraic equations depicting nonlinearity between applied loads and plate lateral deflections. As a numerical example, the case of a square plate made of different materials e.g., isotropic, glass fiber reinforced plastic, and carbon fiber reinforced plastic, under the effect of an initial central deflection and having different edge restraints has been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号