首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the effect of processing conditions on rheology, thermal and electrical properties of nanocomposites containing 0.02–0.3 wt % multiwall carbon nanotubes in an epoxy resin. The influence of the sonication, the surface functionalization during mixing, as well as the application of external magnetic field (EMF) throughout the curing process was examined. Rheological tests combined with optical microscopy visualization are proved as a very useful methodology to determine the optimal processing conditions for the preparation of the nanocomposites. The Raman spectra provide evidence for more pronounced effect on the functionalized with hardener compositions, particularly by curing upon application of EMF. Different chain morphology of CNTs is created depending of the preparation conditions, which induced different effects on the thermal and electrical properties of the nanocomposites. The thermal degradation peak is significantly shifted towards higher temperatures by increasing the nanotube content, this confirming that even the small amount of carbon nanotubes produces a strong barrier effect for the volatile products during the degradation. The ac conductivity measurements revealed lower values of the percolation threshold (pc) in the range of 0.03–0.05 wt %. CNTs for the nanocomposites produced by preliminary dispersing of nanotubes in the epoxy resin, compared to those prepared by preliminary functionalization of the nanotubes in the amine hardener. This is attributed to the higher viscosity and stronger interfacial interactions of the amine hardener/CNT dispersion which restricts the reorganization of the nanotubes. The application of the EMF does not influence the pc value but the dc conductivity values (σdc) of the nanocomposites increased at about one order of magnitude due to the development of the aforementioned chain structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

2.
The flame‐retarded epoxy resin with improved thermal properties based on environmentally friendly flame retardants is vital for industrial application. Hereby, a novel reactive‐type halogen‐free flame retardant, 10‐(3‐(4‐hydroxy phenyl)‐3,4‐dihydro‐2H‐benzo[e] [1,3] oxazin‐4‐yl)‐5H‐phenophosphazinine 10‐oxide (DHA‐B) was synthesized via a two‐step reaction route. Its structure was characterized using 1H, 13C, and 31P NMR and HRMS spectra. For 4,4′‐diaminodipheny ethane (DDM) and diglycidyl ether of bisphenol A (DGEBA)‐cured systems, the epoxy resin with only 2 wt% loading of DHA‐B passed V‐0 rating of UL‐94 test. Significantly, its glass transition temperature (Tg) and initial decomposition temperature (T5%) were as high as 169.6°C and 359.6°C, respectively, which were even higher than those of the corresponding original epoxy resin. Besides, DHA‐B decreased the combustion intensity during combustion. The analysis of residues after combustion suggested that DHA‐B played an important role in the condensed phase.  相似文献   

3.
A new type of epoxy resin containing 4,4′-diphenylether moiety in the backbone (2) was synthesized, and was confirmed by gel permeation chromatography, infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. In addition, in order to evaluate the influence of 4,4′-diphenylether moiety in the structure, epoxy resins having 4,4′-biphenylene moiety (4) and having 1,4-phenylene moiety (6) in place of 4,4′-diphenylether moiety were synthesized. The cured polymer obtained through the curing reaction between the new diphenylether-containing epoxy resin and phenol novolac was used for making a comparison of its thermal and physical properties with those obtained from 4, 6, and bisphenol-A (4,4′-isopropylidenediphenol) type epoxy resin. The cured polymer obtained from 2 showed markedly higher anaerobic char yield at 700°C of 44.0 wt %, higher fracture toughness, and higher mechanical strength and modulus. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3687–3693, 1999  相似文献   

4.
溴化环氧树脂印刷线路板热分解机理实验研究   总被引:2,自引:0,他引:2  
印刷线路板广泛应用于电子电器产品中,随着大量电子废弃物的产生,印刷线路板的回收处理得到了广泛关注.  相似文献   

5.
Nonaqueous synthesis of nanosilica in diglycidyl ether of bisphenol‐A epoxy (DGEBA) resin has been successfully achieved in this study by reacting tetraethoxysilane (TEOS) directly with DGEBA epoxy matrix, at 80 °C for 4 h under the catalysis of boron trifluoride monoethylamine (BF3MEA). BF3MEA was proved to be an effective catalyst for the formation of nanosilica in DGEBA epoxy under thermal heating process. FTIR and 29Si NMR spectra have been used to characterize the structures of nanosilica obtained from this direct thermal synthetic process. The morphology of the nanosilica synthesized in epoxy matrix has also been analyzed by TEM and SEM studies. The effects of both the concentration of BF3MEA catalyst and amount of TEOS on the diameters of nanosilica in the DGEBA epoxy resin have been discussed in this study. From the DSC analysis, it was found that the nanosilica containing epoxy exhibited the same curing profile as pure epoxy resin, during the curing reaction with 4,4′‐diaminodiphenysulfone (DDS). The thermal‐cured epoxy–nanosilica composites from 40% of TEOS exhibited high glass transition temperature of 221 °C, which was almost 50 °C higher than that of pure DGEBA–DDS–BF3MEA‐cured resin network. Almost 60 °C increase in thermal degradation temperature has been observed during the TGA of the DDS‐cured epoxy–nanosilica composites containing 40% of TEOS. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 757–768, 2006  相似文献   

6.
In this work, a novel multifunctional organic‐inorganic hybrid flame agent (AM‐MEL) was prepared from magnesium hydroxide nanosheets decorated by nitrilotrimethylene triphosphonic acid and melamine. Then, an intrinsic flame‐retardant epoxy resin (EP) was prepared by covalently incorporating AM‐MEL nanoparticles. Meanwhile, ammonium polyphosphate (APP) was added into EP to form an intumescent flame retardant system with AM‐MEL. The chemical structure of AM‐MEL was characterized by Fourier transform infrared spectra, X‐ray photoelectron spectroscopy, and scanning electron microscopy. With the incorporation of 5 wt% AM‐MEL and 15 wt% APP, EP/AM‐MEL/APP could reach a limiting oxygen index value of 32.0% and achieve UL‐94 V‐0 rating, along with 88.0%, 70.0%, 81.5%, and 87.3% decrease in the peak heat release rate, total heat release, total smoke production, and the peak CO production rate, respectively, with respect to that of pure EP. The mechanisms of its flame retardant and smoke suppression were investigated.  相似文献   

7.
To investigate the effect of catalysts on the thermal, rheological, and mechanical properties of an epoxy system, a resin based on diglycidyl ether of bisphenol‐A (DGEBA) was cured by two cationic latent thermal catalysts, N‐benzylpyrazinium hexafluoroantimonate (BPH) and N‐benzylquinoxalinium hexafluoroantimonate (BQH). Differential scanning calorimetry was used for the thermal characterization of the epoxy systems. Near‐infrared spectroscopy was employed to examine the cure reaction between the DGEBA and the latent thermal catalysts used. The rheological properties of the blend systems were investigated under an isothermal condition with a rheometer. To characterize the mechanical properties of the systems, flexure, fracture toughness (KIC), and impact tests were performed. The phase morphology was studied with scanning electron microscopy of the fractured surfaces of mechanical test samples. The conversion and cure activation energy of the DGEBA/BQH system were higher than those of the DGEBA/BPH system. The crosslinking activation energy showed a result similar to that obtained from the cure kinetics of the blend systems. The flexure strength, KIC, and impact properties of the DGEBA/BQH system were also superior to those of the DGEBA/BPH system. This was a result of the substituted benzene group of the BQH catalyst, which increased the crosslink density and structural stability of the epoxy system studied. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 187–195, 2001  相似文献   

8.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo-montmorillonite (O-MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The dispersion state of the MMT in the matrix was investigated by X-ray diffraction and scanning electronic microscopy. The thermal stability of the epoxy nanocomposites was examined by TGA. Thermal stability of the epoxy nanocomposite is dependent upon the dispersion state of the OMMT in the epoxy matrix although all the epoxy nanocomposites had enhanced thermal stability compared with the neat epoxy resin. The thermal stability of the epoxy resin nanocomposites was correlated with the dispersion state of the MMT in the epoxy resin matrix.  相似文献   

9.
The IPI‐POSS‐modified epoxy resin (IPEP) was prepared from isocyanato‐propyldinethylsilyl‐isobutyl‐POSS (IPI‐POSS) and diglycidyl ether of bisphenol A epoxy resin. The steric hindrance of the IPEP bulky POSS side chain improved the curing activation energies. The POSS particles sizes were about 2–3 nm and dispersed uniformly. At lower IPEP concentration (POSS < 12 wt %), the glass transition temperatures (Tgs) of the IPEP nanocomposites increased from 118 to 170 °C. The char yield increased from 15 to 20 wt %, and the LOI values increased from 22 to 28. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 643–652, 2010  相似文献   

10.
以苯酚、甲醛、带环氧基团纳米二氧化硅(RNS-E)为原料,采用原位聚合法合成了RNS-E改性酚醛树脂.利用红外光谱(FT-IR)对其结构进行了分析,并利用热重分析(TGA)对其热性能进行了研究.结果表明,改性后的酚醛树脂热稳定性得到提高,当RNS-E的加入量为4%时(质量分数),失重10%时的热分解温度(t10%)较酚醛树脂的提高了15℃,1 000℃下残炭率较酚醛树脂提高了7%.  相似文献   

11.
A new type of epoxy resin which contained cyclic phosphine oxide group in the main chain was synthesized. The structure of the new type of epoxy resin was confirmed by elemental analyses (EA), infrared spectroscopy (IR), and 1H-NMR and 13C-NMR spectroscopies. In addition, compositions of the new synthesized cyclic phosphine oxide epoxy resin (EPCAO) with three curing agents, e.g., bis(3-aminophenyl)methylphosphine oxide (BAMP), 4,4′-diamino-diphenylmethane (DDM), and 4,4′-diaminodiphenylsulfone (DDS), were used for making a comparison of its curing reactivity, heat, and flame retardancy with that of Epon828 and DEN438. The reactivities were measured by differential scanning calorimetry (DSC). Through the evaluation of thermal gravimetric analysis (TGA), those polymers which were obtained through the curing reactions between the new epoxy resin and three curing agents (BAMP, DDM, DDS) also demonstrated excellent thermal properties as well as a high char yield. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Accelerated weathering studies are necessary to determine future risks arising from the loss of durability of materials under environmental conditions (e.g. ultraviolet irradiation from the sun, moisture from rainfall, temperature cycling). The influence of different accelerated weathering conditions such as UV light and moisture on the properties of two epoxy resin systems incorporating microcrystalline cellulose (MCC) was evaluated. This study aimed to assess changes in chemical properties (FTIR), mechanical properties (tensile tests), thermal properties (TGA and DSC) and morphology (SEM) before and after accelerated weathering. The samples exposed to different accelerated weathering times (1, 2, 3, 4, and 6?months) were based on the diglycidyl ether of bisphenol A, DGEBA, or hydrogenated diglycidyl ether of bisphenol A, HDGEBA, with amine crosslinker (2,2,4-trimethyl-1,6-hexanediamine, TMDA) and 2% MCC. Incorporation of MCC improved thermal stability, reduced surface oxidation, and gave better retention of mechanical properties after accelerated weathering. Both epoxy resins and epoxy composites exhibited a reduction in the tensile strength upon accelerated weathering with the composites showing less reduction in the tensile strength after 6 months. The glass transition temperatures (Tg) before and after accelerated weathering were also measured. DGEBA-TMDA/2%MCC and HDGEBA-TMDA/2% MCC composites reduced the decrease in the Tg after accelerated weathering, compared to that of DGEBA-TMDA and HDGEBA-TMDA samples. Degradation primarily decreased the mechanical properties of the composites, with some damaged specimens showing on the surfaces of DGEBA-TMDA/2% epoxy composites and HGEBA-TMDA/2%MCC composites. Fewer morphological changes with limited voids were seen on the DGEBA epoxy interface for HDGEBA compared to DGEBA composite samples. Incorporation of 2%MCC in DGEBA-TMDA and HDGEBA-TMDA increased resistance to thermal degradation after accelerated weathering.  相似文献   

13.
Bisphenol A and bisphenol F epoxy resins (BA and BF) were chemically modified by 9,10‐Dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide to improve their liquid oxygen compatibility. The structures of the modified epoxy resins were confirmed by Fourier transform infrared spectroscopy. Significant enhancement of liquid oxygen compatibility for the modified resins was detected according to the liquid oxygen mechanical impact test. Thermogravimetric analysis showed that during the degradation in oxygen atmosphere, the modified resins exhibited much lower weight loss rate and possessed much higher char residues than the control ones. Based on limited oxygen index test, better flame retardancy was also observed for the modified resins. In addition, the modified BA system was more excellent than the modified BF system in liquid oxygen compatibility, thermal stability, and flame retardancy. X‐ray photoelectron spectroscopy analysis showed that after the liquid oxygen impact, the modified resins was still in oxidation stage and the control ones already begun to decompose and char. It could be attributed to formation of the phosphoric oxyacid on the surface of the modified resins, which prevented decomposition and inhibited the reaction between the specimen and liquid oxygen. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
采用端甲氧基聚乙二醇、马来酸酐、E-44环氧树脂合成了反应型环氧树脂乳化剂MeO-PEG-Ma-E-44,以相反转乳化技术制备E-44水性环氧树脂,研究了工艺条件对其性能的影响。结果表明:酯化率达98.5%的MeO-PEG-Ma-E-44,用量为E-44的ω=16.5%-20%得到的水性环氧树脂乳液最稳定。DSC和TG分析结果表明:乳化前后的E-44环氧树脂都能室温条件2h内很好的固化,固化后热性能基本不变,分解温度约在380℃,热失重率89%,其玻璃转变温度有所降低,韧性有所提高,其它性能基本不受影响。  相似文献   

15.
A metal-doped organic and inorganic hybrid polyhedral oligomeric silsesquioxanes (POSS) with a titanium atom in the POSS cage and an ethanolamine substitute group in the corner, namely MEA-Ti-POSS, was synthesized through simple condensation reaction and substitute reaction. It was blended with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) to form a kind of blending-type flame retardant system for the modification of epoxy resins. The thermal stability, flame retardancy and mechanical properties of cured epoxy resin composites were studied. Comparing with pure epoxy resin, the LOI value of EP/MEA-Ti-POSS/DOPO composites was raised from 25.2% to 32.7%, and the UL-94 grade reached V-0 level at a loading of the mixture of 5% MEA-Ti-POSS and 5% DOPO. In addition, the cone calorimetry results showed that the heat release rate, total heat release and total smoke production as well as smoke production rate were all reduced during the combustion of EP/MEA-Ti-POSS/DOPO composites. The residual char analysis revealed that carbon residues of EP/MEA-Ti-POSS/DOPO composite served as a physical protective layer to insulate the oxygen and combustible gases to reduce the ablation of the matrix. It was concluded that the mixture of MEA-Ti-POSS and DOPO not only effectively raised the thermal stability and flame retardancy of epoxy composited materials, but also improved their mechanical properties, which expanded a promising application of the metal-POSS derivatives as non-halogen additives in the flame retardant polymers.  相似文献   

16.
Multifunctional epoxy resins with excellent, thermal, flame‐retardant, and mechanical properties are extremely important for various applications. To solve this challenging problem, a novel highly efficient multielement flame retardant (PMSBA) is synthesized and the flame‐retardant and mechanical properties of modified epoxy resins are greatly enhanced without significantly altering their and thermal properties by applying the as‐synthesized PMSBA. The limiting oxygen index value reaches up to 29.6% and could pass the V‐0 rating in the UL‐94 test with even low P content (0.13%). Furthermore, cone calorimetry results demonstrate that 30.3% reduction in the peak heat release rate for the sample with 10.0 wt% PMSBA is achieved. X‐ray photoelectron spectroscopy and scanning electron microscopy indicate that Si‐C, Si‐N, and phosphoric acid derivative can be transformed into a multihole and intumescent char layer as an effective barrier, preserving the epoxy resin structure from fire. More importantly, mechanical properties such as impact strength, tensile strength, and flexural strength are also increased by 63.86%, 33.54%, and 15.65%, respectively, which show the incorporation of PMSBA do not deteriorate the mechanical properties of modified epoxy resins. All the results show that PMSBA is a promising strategy for epoxy resin with satisfactory, thermal, flame‐retardant, and mechanical properties.  相似文献   

17.
The epoxy resin containing a typical mesogenic group such as biphenol was cured with catechol novolak and aromatic diamines which have neighboring active hydrogens. In the biphenol-type epoxy resin cured with catechol novolak, 4,4′ diaminodiphenylmethane, and p-phenylenediamine (PPD), the glass-rubber transition almost disappeared, and thus a very high elastic modulus was obtained in the high temperature region. It is clear that the thermal motion of the network chains is significantly suppressed in these cured systems. In addition, in the PPD-cured system, a characteristic pattern like a schlieren texture was clearly observed under the crossed polarized optical microscope. Thus we conclude that the mesogenic group contained in the epoxy molecule is oriented in the networks when the mesogenic epoxy resin is cured with phenols and diamines which have neighboring active hydrogens. On the other hand, the biphenol-type resin cured with 3,3′,5,5′-tetraethyl-4,4′-diamino diphenylmethane (TEDDM) showed a well-defined glass-rubber transition and, thus, a low rubbery modulus. In this cured system, no characteristic pattern was observed under the crossed polarized light. These results show that the large branches, such as ethyl groups on the network chains, prevent the orientation of network chains which contain the mesogenic group. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
A new class of nanocomposite has been fabricated from liquid crystalline (LC) epoxy resin of 4,4′‐bis(2,3‐epoxypropoxy) biphenyl (BP), 4,4′‐diamino‐diphenyl sulfone (DDS), and multiwalled carbon nanotubes (CNTs). The surface of the CNTs was functionalized by LC epoxy resin (ef‐CNT). The ef‐CNT can be blended well with the BP that is further cured with an equivalent of DDS to form nanocomposite. We have studied the curing kinetics of this nanocomposite using isothermal and nonisothermal differential scanning calorimetry (DSC). The dependence of the conversion on time can fit into the autocatalytic model before the vitrification, and then it becomes diffusion control process. The reaction rate increases and the activation energy decreases with increasing concentration of the ef‐CNT. At 10 wt % of ef‐CNT, the activation energy of nanocomposite curing is lowered by about 20% when compared with the neat BP/DDS resin. If the ef‐CNT was replaced by thermal‐insulating TiO2 nanorods on the same weight basis, the decrease of activation energy was not observed. The result indicates the accelerating effect on the nanocomposite was raised from the high‐thermal conductivity of CNT and aligned LC epoxy resin. However, at ef‐CNT concentration higher than 2 wt %, the accelerating effect of ef‐CNTs also antedates the vitrification and turns the reaction to diffusion control driven. As the molecular motions are limited, the degree of cure is lowered. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

19.
Photochemical reactions of various blocked polyfunctional amines such as bis(4-formylaminophenyl)methane (FAPM), bis(4-acetylaminophenyl)methane (AAPM), bis(4-benzoylaminophenyl)methane (BAPM), 2,4-diformylaminotoluene (DFAT), m-xylene diformamide, and bis[[(2-nitrobenzyl)oxy]carbonyl]hexane-1.6-diamine were carried out to give the corresponding free amines in THF solution, in epoxy resin, or in polyurethane oligomer with terminal isocyanate groups. Photolysis of FAPM and DFAT to produce the corresponding polyfunctional amines such as 4,4'-methylenedianiline and 2,4-diaminotoluene proceeded with 80 and 75% conversions, respectively, in THF solution under UV irradiation at 5 h. AAPM and BAPM also produced the corresponding photo-Fries rearrangement products with 32 and 38% conversions, respectively, under the same irradiation conditions. The photolysis of those compounds also occurred with similar conversions in the epoxy resin and in the polyurethane oligomer under UV irradiation; and the thermal curing reactions of the epoxy resin and the polyurethane oligomer with photogenerated polyfunctional amines proceeded smoothly after heating at 140°C for 2 hrs. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Hexakis(4-hydroxyphenoxy)-cyclotriphosphazene (PN-OH) was synthesized through nucleophilic substitution of the chloride atoms of hexachlorocyclotriphosphazene and reduction of the aldehyde groups, and its chemical structure was characterized by elemental analysis, 1H and 31P NMR, and Fourier transform infrared (FTIR) spectroscopy. A new phosphazene-based epoxy resin (PN-EP) was successfully synthesized through the reaction between diglycidyl ether of bisphenol-A (DGEBA) and PN-OH, and its chemical structure was confirmed by FTIR and gel permeation chromatography. Four PN-EP thermosets were obtained by curing with 4,4′-diaminodiphenylmethane (DDM), dicyandiamide (DICY), novolak and pyromellitic dianhydride (PMDA). The reactivity of PN-EP with the four curing agents presents an increase in the order of DDM, PMDA, novolak and DICY. An investigation on their thermal properties shows that the PN-EP thermosets achieve higher glass-transition and decomposition temperatures in comparison with the corresponding DGEBA ones while their char yields increase significantly. The PN-EP thermosets also exhibit excellent flame retardancy. The thermosets with novolak, DICY and PMDA achieve the LOI values above 30 and flammability rating of UL94 V-0, whereas the one with DDM reaches the V-1 rating. The nonflammable halogen-free epoxy resin synthesized in this study has potential applications in electric and electronic fields in consideration of the environment and human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号