首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examines optimal investment and reinsurance policies for an insurer with the classical surplus process. It assumes that the financial market is driven by a drifted Brownian motion with coefficients modulated by an external Markov process specified by the solution to a stochastic differential equation. The goal of the insurer is to maximize the expected terminal utility. This paper derives the Hamilton–Jacobi–Bellman (HJB) equation associated with the control problem using a dynamic programming method. When the insurer admits an exponential utility function, we prove that there exists a unique and smooth solution to the HJB equation. We derive the explicit optimal investment policy by solving the HJB equation. We can also find that the optimal reinsurance policy optimizes a deterministic function. We also obtain the upper bound for ruin probability in finite time for the insurer when the insurer adopts optimal policies.  相似文献   

2.
We address finding the semi-global solutions to optimal feedback control and the Hamilton–Jacobi–Bellman (HJB) equation. Using the solution of an HJB equation, a feedback optimal control law can be implemented in real-time with minimum computational load. However, except for systems with two or three state variables, using traditional techniques for numerically finding a semi-global solution to an HJB equation for general nonlinear systems is infeasible due to the curse of dimensionality. Here we present a new computational method for finding feedback optimal control and solving HJB equations which is able to mitigate the curse of dimensionality. We do not discretize the HJB equation directly, instead we introduce a sparse grid in the state space and use the Pontryagin’s maximum principle to derive a set of necessary conditions in the form of a boundary value problem, also known as the characteristic equations, for each grid point. Using this approach, the method is spatially causality free, which enjoys the advantage of perfect parallelism on a sparse grid. Compared with dense grids, a sparse grid has a significantly reduced size which is feasible for systems with relatively high dimensions, such as the 6-D system shown in the examples. Once the solution obtained at each grid point, high-order accurate polynomial interpolation is used to approximate the feedback control at arbitrary points. We prove an upper bound for the approximation error and approximate it numerically. This sparse grid characteristics method is demonstrated with three examples of rigid body attitude control using momentum wheels.  相似文献   

3.
In this paper we are interested in an investment problem with stochastic volatilities and portfolio constraints on amounts. We model the risky assets by jump diffusion processes and we consider an exponential utility function. The objective is to maximize the expected utility from the investor terminal wealth. The value function is known to be a viscosity solution of an integro-differential Hamilton-Jacobi-Bellman (HJB in short) equation which could not be solved when the risky assets number exceeds three. Thanks to an exponential transformation, we reduce the nonlinearity of the HJB equation to a semilinear equation. We prove the existence of a smooth solution to the latter equation and we state a verification theorem which relates this solution to the value function. We present an example that shows the importance of this reduction for numerical study of the optimal portfolio. We then compute the optimal strategy of investment by solving the associated optimization problem.  相似文献   

4.
We study the ergodic control problem for a class of controlled jump diffusions driven by a compound Poisson process. This extends the results of Arapostathis et al. (2019) to running costs that are not near-monotone. This generality is needed in applications such as optimal scheduling of large-scale parallel server networks.We provide a full characterizations of optimality via the Hamilton–Jacobi–Bellman (HJB) equation, for which we additionally exhibit regularity of solutions under mild hypotheses. In addition, we show that optimal stationary Markov controls are a.s. pathwise optimal. Lastly, we show that one can fix a stable control outside a compact set and obtain near-optimal solutions by solving the HJB on a sufficiently large bounded domain. This is useful for constructing asymptotically optimal scheduling policies for multiclass parallel server networks.  相似文献   

5.
杨鹏  林祥 《经济数学》2012,(1):42-46
对跳-扩散风险模型,研究了最优投资和再保险问题.保险公司可以购买再保险减少理赔,保险公司还可以把盈余投资在一个无风险资产和一个风险资产上.假设再保险的方式为联合比例-超额损失再保险.还假设无风险资产和风险资产的利率是随机的,风险资产的方差也是随机的.通过解决相应的Hamilton-Jacobi-Bellman(HJB)方程,获得了最优值函数和最优投资、再保险策略的显示解.特别的,通过一个例子具体的解释了得到的结论.  相似文献   

6.
Using the decomposition of solution of SDE, we consider the stochastic optimal control problem with anticipative controls as a family of deterministic control problems parametrized by the paths of the driving Wiener process and of a newly introduced Lagrange multiplier stochastic process (nonanticipativity equality constraint). It is shown that the value function of these problems is the unique global solution of a robust equation (random partial differential equation) associated to a linear backward Hamilton-Jacobi-Bellman stochastic partial differential equation (HJB SPDE). This appears as limiting SPDE for a sequence of random HJB PDE's when linear interpolation approximation of the Wiener process is used. Our approach extends the Wong-Zakai type results [20] from SDE to the stochastic dynamic programming equation by showing how this arises as average of the limit of a sequence of deterministic dynamic programming equations. The stochastic characteristics method of Kunita [13] is used to represent the value function. By choosing the Lagrange multiplier equal to its nonanticipative constraint value the usual stochastic (nonanticipative) optimal control and optimal cost are recovered. This suggests a method for solving the anticipative control problems by almost sure deterministic optimal control. We obtain a PDE for the “cost of perfect information” the difference between the cost function of the nonanticipative control problem and the cost of the anticipative problem which satisfies a nonlinear backward HJB SPDE. Poisson bracket conditions are found ensuring this has a global solution. The cost of perfect information is shown to be zero when a Lagrangian submanifold is invariant for the stochastic characteristics. The LQG problem and a nonlinear anticipative control problem are considered as examples in this framework  相似文献   

7.
This paper is concerned with a finite-horizon optimal selling rule. A set of geometric Brownian motions coupled by a finite-state Markov chain is used to characterize stock price movements. Given a fixed transaction fee, the optimal selling rule can be obtained by solving an optimal stopping problem. The corresponding value function is shown to be the unique viscosity solution to the associated HJB equations. Numerical solutions to these equations and their convergence are obtained. A numerical example is presented to illustrate the results.  相似文献   

8.
In the paper, we propose a numerical technique based on a finite difference scheme in space and an implicit time-stepping scheme for solving the Hamilton–Jacobi–Bellman (HJB) equation arising from the penalty formulation of the valuation of European options with proportional transaction costs. We show that the approximate solution from the numerical scheme converges to the viscosity solution of the HJB equation as the mesh sizes in space and time approach zero. We also propose an iterative scheme for solving the nonlinear algebraic system arising from the discretization and establish a convergence theory for the iterative scheme. Numerical experiments are presented to demonstrate the robustness and accuracy of the method.  相似文献   

9.
研究建立两类理赔关系的二维复合泊松模型的最优分红与注资问题,目标为最大化分红减注资的折现. 该问题由随机控制问题刻画, 通过解相应的哈密尔顿-雅克比-贝尔曼(HJB)方程,得到了最优分红策略,并在指数理赔时明确地解决该问题.  相似文献   

10.
In this paper, we outline an impulse stochastic control formulation for pricing variable annuities with a guaranteed minimum withdrawal benefit (GMWB) assuming the policyholder is allowed to withdraw funds continuously. We develop a numerical scheme for solving the Hamilton–Jacobi–Bellman (HJB) variational inequality corresponding to the impulse control problem. We prove the convergence of our scheme to the viscosity solution of the continuous withdrawal problem, provided a strong comparison result holds. The scheme can be easily generalized to price discrete withdrawal contracts. Numerical experiments are conducted, which show a region where the optimal control appears to be non-unique.  相似文献   

11.
Control problems not admitting the dynamic programming principle are known as time-inconsistent. The game-theoretic approach is to interpret such problems as intrapersonal dynamic games and look for subgame perfect Nash equilibria. A fundamental result of time-inconsistent stochastic control is a verification theorem saying that solving the extended HJB system is a sufficient condition for equilibrium. We show that solving the extended HJB system is a necessary condition for equilibrium, under regularity assumptions. The controlled process is a general Itô diffusion.  相似文献   

12.
We investigate an optimal portfolio and consumption choice problem with a defaultable security. Under the goal of maximizing the expected discounted utility of the average past consumption, a dynamic programming principle is applied to derive a pair of second-order parabolic Hamilton-Jacobi-Bellman (HJB) equations with gradient constraints. We explore these HJB equations by a viscosity solution approach and characterize the post-default and pre-default value functions as a unique pair of constrained viscosity solutions to the HJB equations.  相似文献   

13.
本文研究了投资者在极端事件冲击下带通胀的最优投资组合选择问题, 其中投资者不仅对损失风险是厌恶的而且对模型不确定也是厌恶的. 投资者在风险资产和无风险资产中进行投资. 首先, 利用Ito公式推导考虑通胀的消费篮子价格动力学方程, 其次由通胀折现的终端财富预期效用最大化, 对含糊厌恶投资者的最优期望效用进行刻画. 利用动态规划原理, 建立最优消费和投资策略所满足的HJB方程. 再次, 利用市场分解的方法解出HJB方程, 获得投资者最优消费和投资策略的显式解. 最后, 通过数值模拟, 分析了含糊厌恶、风险厌恶、跳和通胀因素对投资者最优资产配置策略的影响.  相似文献   

14.
For a financial or insurance entity, the problem of finding the optimal dividend distribution strategy and optimal firm value function is a widely discussed topic. In the present paper, it is assumed that the firm faces two types of liquidity risks: a Brownian risk and a Poisson risk. The firm can control the time and amount of dividends paid out to shareholders. By sufficiently taking into account the safety of the company, bankruptcy is said to take place at time $t$ if the cash reserve of the firm runs below the linear barrier b+kt (not zero), see 1. We deal with the problem of maximizing the expected total discounted dividends paid out until bankruptcy. The optimal dividend return (or, firm value) function is identified as the classical solution of the associated Hamilton-Jacobi-Bellman (HJB) equation where a second-order differential-integro equation is involved. By solving the corresponding HJB equation, the analytical solution of the optimal firm value function is obtained, the optimal dividend strategy is also characterized, which is of linear barrier type: at time t the firm keeps cash inside when the cash reserves level is less than a critical linear barrier and pays cash in excess of this linear barrier as dividends.  相似文献   

15.
In this paper we use stochastic optimal control theory to investigate a dynamic portfolio selection problem with liability process, in which the liability process is assumed to be a geometric Brownian motion and completely correlated with stock prices. We apply dynamic programming principle to obtain Hamilton-Jacobi-Bellman (HJB) equations for the value function and systematically study the optimal investment strategies for power utility, exponential utility and logarithm utility. Firstly, the explicit expressions of the optimal portfolios for power utility and exponential utility are obtained by applying variable change technique to solve corresponding HJB equations. Secondly, we apply Legendre transform and dual approach to derive the optimal portfolio for logarithm utility. Finally, numerical examples are given to illustrate the results obtained and analyze the effects of the market parameters on the optimal portfolios.  相似文献   

16.
In [T. Coleman, C. He, Y. Li, Calibrating volatility function bounds for an uncertain volatility model, Journal of Computational Finance (2006) (submitted for publication)], an entropy minimization formulation has been proposed to calibrate an uncertain volatility option pricing model (UVM) from market bid and ask prices. To avoid potential infeasibility due to numerical error, a quadratic penalty function approach is applied. In this paper, we show that the solution to the quadratic penalty problem can be obtained by minimizing an objective function which can be evaluated via solving a Hamilton–Jacobian–Bellman (HJB) equation. We prove that the implicit finite difference solution of this HJB equation converges to its viscosity solution. In addition, we provide computational examples illustrating accuracy of calibration.  相似文献   

17.
In this paper, the insurer is allowed to buy reinsurance and allocate his money among three financial securities: a defaultable corporate zero-coupon bond, a default-free bank account, and a stock, while the instantaneous rate of the stock is described by an Ornstein-Uhlenbeck process. The objective is to maximize the exponential utility of the terminal wealth. We decompose the original optimization problem into two subproblems: a pre-default case and a post-default case. Using dynamic programming principle, and then solving the corresponding HJB equations, we derive the closed-form solutions for the optimal reinsurance and investment strategies and the corresponding value functions  相似文献   

18.
This paper considers the dividend optimization problem for an insurance company under the consideration of internal competition between different units inside the company. The objective is to find a reinsurance policy and a dividend payment scheme so as to maximize the expected discounted value of the dividend payment, and the expected present value of an amount which the insurer earns until the time of ruin. By solving the corresponding constrained Hamilton-Jacobi-Bellman (HJB) equation, we obtain the value function and the optimal reinsurance policy and dividend payment.  相似文献   

19.
In this paper, the authors investigate the optimal conversion rate at which land use is irreversibly converted from biodiversity conservation to agricultural production. This problem is formulated as a stochastic control model, then transformed into a HJB equation involving free boundary. Since the state equation has singularity, it is difficult to directly derive the boundary value condition for the HJB equation. They provide a new method to overcome the difficulty via constructing another auxiliary stochastic control problem,and impose a proper boundary value condition. Moreover, they establish the existence and uniqueness of the viscosity solution of the HJB equation. Finally, they propose a stable numerical method for the HJB equation involving free boundary, and show some numerical results.  相似文献   

20.
This paper concerns an optimal dividend-penalty problem for the risk models with surplus-dependent premiums. The objective is to maximize the difference of the expected cumulative discounted dividend payments received until the moment of ruin and a discounted penalty payment taken at the moment of ruin. Since the value function may be not smooth enough to be the classical solution of the HJB equation, the viscosity solution is involved.The optimal value function can be characterized as the smallest viscosity supersolution of the HJB equation and the optimal dividend-penalty strategy has a band structure. Finally,some numerical examples with gamma distribution for the claims are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号