首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
We consider the see-saw mechanism for hierarchical Dirac and Majorana neutrino mass matrices m D and M R, including the CP violating phases. Simple arguments about the structure of the neutrino mass matrix and the requirement of successful leptogenesis lead to the situation that one of the right-handed Majorana neutrinos is much heavier than the other two, which in turn display a rather mild hierarchy. It is investigated how for the neutrino mixing one small and two large mixing angles are generated. The mixing matrix element |U e3|2 is larger than 10-3 and a characteristic ratio between the branching ratios of lepton flavor violating charged lepton decays is found. Successful leptogenesis implies sizable CP violation in oscillation experiments. As in the original minimal see-saw model, the signs of the baryon asymmetry of the universe and of the CP asymmetry in neutrino oscillations are equal and there is no connection between the leptogenesis phase and the effective mass as measurable in neutrinoless double beta decay.Received: 28 May 2003, Revised: 13 September 2003, Published online: 26 November 2003  相似文献   

2.
We present a model of leptogenesis that preserves lepton number. The model maintains the important feature of more traditional leptogenesis scenarios: The decaying particles that provide the CP violation necessary for baryogenesis also provide the explanation for the smallness of the neutrino Yukawa couplings. This model clearly demonstrates that, contrary to conventional wisdom, neutrinos need not be Majorana in nature in order to help explain the baryon asymmetry of the universe.  相似文献   

3.
The equations connecting elements of the Yukawa matrix to elements of the active neutrino mass matrix in the νMSM theory (an extension of the Standard Model by a singlet of three right-handed neutrinos) was analyzed, and explicit relations for the ratio of the Yukawa matrix elements and elements of the active neutrino mass matrix were obtained. This relation can be used for getting more accurate constraints on the model parameters. Particularly, with the help of the obtained results we investigated CP-violating phase in the νMSM theory. We demonstrate that even in the case when elements of the active neutrino mass matrix are real the baryon asymmetry can be generated also.  相似文献   

4.
Resonant tau leptogenesis with observable lepton number violation   总被引:1,自引:0,他引:1  
We consider a minimal extension of the standard model with one singlet neutrino per generation that can realize resonant leptogenesis at the electroweak scale. In particular, the baryon asymmetry in the Universe can be created by lepton-to-baryon conversion of an individual lepton number, for example, that of the tau lepton. The current neutrino data can be explained by a simple CP-violating Yukawa texture. The model has several testable phenomenological implications. It contains heavy Majorana neutrinos at the electroweak scale, which can be probed at e+ e- linear colliders, and predicts e- and mu-lepton-number-violating processes, such as 0nu betabeta decay, mu --> e gamma, and mu-e conversion in nuclei, with rates that are within reach of experimental sensitivity.  相似文献   

5.
In type I seesaw models with flavor symmetries accounting for the lepton mixing angles the CP asymmetry in right-handed neutrino decays vanishes in the limit in which the mixing pattern is exact. We study the implications that additional degrees of freedom from type II seesaw may have for leptogenesis in such a limit. We classify in a model independent way the possible realizations of type I and II seesaw schemes, differentiating between classes in which leptogenesis is viable or not. We point out that even with the interplay of type I and II seesaws there are generic classes of minimal models in which the CP asymmetry vanishes. Finally we analyze the generation of the lepton asymmetry by solving the corresponding kinetic equations in the general case of a mild hierarchy between the light right-handed neutrino and the scalar triplet masses. We identify the possible scenarios in which leptogenesis can take place.  相似文献   

6.
The presence of domain walls separating regions of unbrokenSU(2)L andSU(2)R is shown to provide necessary conditions for leptogenesis which converts later to the observed baryon asymmetry. The strength of lepton number violation is related to the Majorana neutrino mass and hence related to current bounds on light neutrino masses. Thus the observed neutrino masses and the baryon asymmetry can be used to constrain the scale of left-right symmetry breaking.  相似文献   

7.
We analyse, within the “flavoured” leptogenesis scenario of baryon asymmetry generation, the interplay of “low energy” CP-violation, originating from the PMNS neutrino mixing matrix U, and “high energy” CP-violation, which can be present in the matrix of neutrino Yukawa couplings, λ, and can manifest itself only in “high” energy scale processes. The type I see-saw model with three heavy right-handed Majorana neutrinos having a hierarchical spectrum is considered. The “orthogonal” parameterisation of the matrix of neutrino Yukawa couplings, which involves a complex orthogonal matrix R, is employed. In this approach the matrix R is the source of “high energy” CP-violation. Results for normal hierarchical (NH) and inverted hierarchical (IH) light neutrino mass spectrum are derived in the case of decoupling of the heaviest right-handed Majorana neutrino. It is shown that taking into account the contribution to Y B due to the CP-violating phases in the neutrino mixing matrix U can change drastically the predictions for Y B , obtained assuming that only “high energy” CP-violation from the R-matrix is operative in leptogenesis. In the case of the IH spectrum, in particular, there exist significant regions in the corresponding parameter space where the purely “high energy” contribution in Y B plays a subdominant role in the production of baryon asymmetry compatible with the observations. Also at Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria.  相似文献   

8.
We argue that fast interactions of the lightest singlet neutrino N1 would project part of a preexisting lepton asymmetry L{p} onto a direction that is protected from N1 washout effects, thus preventing it from being erased. In particular, we consider an asymmetry generated in N2 decays, assuming that N1 interactions are fast enough to bring N1 into full thermal equilibrium. If N1 decays occur at T > or = 10{9} GeV, that is, before the muon Yukawa interactions enter into thermal equilibrium, then generically part of L{p} survives. In this case some of the constraints implied by the standard N1 leptogenesis scenario hold only if L{p} approximately 0. For T < or = 10{9} GeV, L{p} is generally erased, unless special alignment or orthogonality conditions in flavor space are realized.  相似文献   

9.
It is shown that the mixing of lepton doublets of the Standard Model can yield sizable contributions to the lepton asymmetry, that is generated through the decays of right-handed neutrinos at finite temperature in the early Universe. When calculating the flavour-mixing correlations, we account for the effects of Yukawa as well as of gauge interactions. We compare the freeze-out asymmetry from lepton-doublet mixing to the standard contributions from the mixing and direct decays of right-handed neutrinos. The asymmetry from lepton mixing is considerably large when the mass ratio between the right-handed neutrinos is of order of a few, while it becomes Maxwell-suppressed for larger hierarchies. For an intermediate range between the case of degenerate right-handed neutrinos (resonant leptogenesis) and the hierarchical case, lepton mixing can yield the main contribution to the lepton asymmetry.  相似文献   

10.
We consider leptogenesis in a minimal S3 extension of the standard model with an additional Z2 symmetry in the leptonic sector. It is found that the CP phase appearing in the mass matrix of the left-handed neutrinos is the same as that for the CP asymmetries responsible for leptogenesis. Because of the discrete S3 x Z2 flavor symmetries, the CP asymmetries are strongly suppressed. To obtain a realistic size of the baryon number asymmetry in the universe, we therefore have to assume that resonant enhancement of the CP asymmetries takes place, and that three degenerate right-handed neutrino masses of O(10) TeV are present. Arrival of the final proofs: 22 November 2005 PACS: 11.30.Hv, 12.15.Ff, 14.60.Pq  相似文献   

11.
In supersymmetric models with lepton-number violation, hence also R-parity violation, it is easy to have realistic neutrino masses, but then leptogenesis becomes difficult to achieve. After explaining the general problems involved, we study the details of a model which escapes these constraints and generates a lepton asymmetry, which gets converted into the present observed baryon asymmetry of the Universe through the electroweak sphalerons. This model requires the presence of certain nonholomorphic R-parity violating terms. For completeness we also present the most general R-parity violating Lagrangian with soft nonholomorphic terms and study their consequences for the charged-scalar mass matrix. New contributions to neutrino masses in this scenario are discussed.  相似文献   

12.
In the supersymmetric standard model of particle interactions, R-parity nonconservation is often invoked to obtain nonzero neutrino masses. We point out here that such interactions of the supersymmetric particles would erase any pre-existing lepton or baryon asymmetry of the universe before the electroweak phase transition through the B+L violating sphaleron processes. We also point out that all models of radiative generation of neutrino masses suffer from the same problem. We then show how neutrino masses may be obtained in supersymmetry (assuming R-parity conservation) together with successful leptogenesis and predict the possible existence of new observable particles.  相似文献   

13.
Thermal leptogenesis explains the observed matter–antimatter asymmetry of the universe in terms of neutrino masses, consistent with neutrino oscillation experiments. We present a full quantum mechanical calculation of the generated lepton asymmetry based on Kadanoff–Baym equations. Origin of the asymmetry is the departure from equilibrium of the statistical propagator of the heavy Majorana neutrino, together with CP violating couplings. The lepton asymmetry is calculated directly in terms of Green’s functions without referring to “number densities”. Compared to Boltzmann and quantum Boltzmann equations, the crucial difference are memory effects, rapid oscillations much faster than the heavy neutrino equilibration time. These oscillations strongly suppress the generated lepton asymmetry, unless the standard model gauge interactions, which cause thermal damping, are properly taken into account. We find that these damping effects essentially compensate the enhancement due to quantum statistical factors, so that finally the conventional Boltzmann equations again provide rather accurate predictions for the lepton asymmetry.  相似文献   

14.
We make a simple observation that if one of the right-chiral neutrinos is very heavy or its Yukawa couplings to the standard lepton doublets are negligible, so that it effectively decouples from the see-saw mechanism, the prediction for the baryon asymmetry of the universe resulting from leptogenesis depends only on the masses M1 and M2 of the remaining two right-chiral neutrinos and the element of the neutrino Yukawa coupling. For M25M1 the lower bound on M1 and also on Treh, resulting from the requirement of ‘successful leptogenesis’ is then significantly increased compared to the one computed recently by Buchmüller et al. in the most general case. Within the framework of thermal leptogenesis, the only way to lower this limit is then to allow for sufficiently small mass difference M2M1.  相似文献   

15.
We study renormalisation group (RG) corrections relevant for leptogenesis in the case of family symmetry models such as the Altarelli–Feruglio A4A4 model of tri-bimaximal lepton mixing or its extension to tri-maximal mixing. Such corrections are particularly relevant since in large classes of family symmetry models, to leading order, the CP violating parameters of leptogenesis would be identically zero at the family symmetry breaking scale, due to the form dominance property. We find that RG corrections violate form dominance and enable such models to yield viable leptogenesis at the scale of right-handed neutrino masses. More generally, the results of this paper show that RG corrections to leptogenesis cannot be ignored for any family symmetry model involving sizeable neutrino and τ Yukawa couplings.  相似文献   

16.
The Higgs boson mass spectrum and couplings of the neutral Higgs bosons to the fermions are worked out in a CP spontaneously broken two-Higgs doublet model in the large case. The differential branching ratio, forward-backward asymmetry, CP asymmetry and lepton polarization for are computed. It is shown that the effects of neutral Higgs bosons are quite significant when is large. Especially, the CP violating normal polarization can be as large as several percents. Received: 15 October 2001 / Revised version: 5 March 2002 / Published online: 26 July 2002  相似文献   

17.
For standard leptogenesis from the decay of singlet right-handed neutrinos, we derive source terms for the lepton asymmetry that are present in a finite density background but absent in the vacuum. These arise from cuts through the vertex correction to the decay asymmetry, where in the loop either the Higgs boson and the right-handed neutrino or the left-handed lepton and the right-handed neutrino are simultaneously on-shell. We evaluate the source terms numerically and use them to calculate the lepton asymmetry for illustrative points in parameter space, where we consider only two right-handed neutrinos for simplicity. Compared to calculations where only the standard cut through the propagators of left-handed lepton and Higgs boson is included, sizable corrections arise when the masses of the right-handed neutrinos are of the same order, but the new sources are found to be most relevant when the decaying right-handed neutrino is heavier than the one in the loop. In that situation, they can yield the dominant contribution to the lepton asymmetry.  相似文献   

18.
We consider the minimal supersymmetric triplet seesaw model as the origin of neutrino masses and mixing as well as of the baryon asymmetry of the Universe, which is generated through soft leptogenesis employing a CP-violating phase and a resonant behavior in the supersymmetry breaking sector. We calculate the full gauge-annihilation cross section for the Higgs triplets, including all relevant supersymmetric intermediate and final states, as well as coannihilations with the fermionic superpartners of the triplets. We find that these gauge annihilation processes strongly suppress the resulting lepton asymmetry. As a consequence of this, successful leptogenesis can occur only for a triplet mass at the TeV scale, where the contribution of soft supersymmetry breaking terms enhances the CP and lepton asymmetry. This opens up an interesting opportunity for testing the model in future colliders.  相似文献   

19.
We consider Dirac leptogenesis in supersymmetric theories where the supersymmetry breaking is transmitted to the observable sector by an anomalous U(1) symmetry. This kind of supersymmetry breaking is known to provide a solution to the problem and avoid large CP-violation effects. The asymmetries generated by the decays of heavy leptons do not suffer from wash-out due to the equilibration of left- and right-handed neutrinos thanks to the extreme smallness of the neutrino masses. The model ties up the smallness of the neutrino masses and the out-of-equilibrium nature of the heavy lepton decays with no tension with the overproduction of gravitinos.Received: 23 October 2003, Revised: 31 August 2004, Published online: 20 October 2004  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号