首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 696 毫秒
1.
A kinetic study of the hexacyanoferrate(III)-cyanide redox reaction has been made in connection with development of a new catalytic method for copper. The reaction kinetics change with time from first- to second-order dependence with respect to hexacyanoferrate(III). The reaction is nearly inverse first-order with respect to hexacyanoferrate(II) and first-order with respect to cyanide. The reaction shows a strong positive primary salt effect, but a very small increase in the reaction rate with temperature is found. A parallel reaction proceeds with a first-order dependence with respect to hydroxide. A tentative mechanism is proposed for the first reaction, involving the formation of cyanogen radicals. The second reaction corresponds to the well-known decomposition of hexacyanoferrate(III) in alkaline medium. The catalysed reaction exhibits similar kinetics with respect to hexacyanoferrate(II) and (III) but is zero-order with respect to cyanide and hydroxide and first-order with respect to catalyst. The proposed mechanism involves two consecutive interactions of the hexacyanoferrate(III) with copper(I) and with copper(II) cyanide complexes respectively, followed by a 2-electron oxidation of a co-ordinatively bridging cyanide group.  相似文献   

2.
A sodium chloride (NaCl) catalyst (0.1 w/w %) lowers the oxidation temperature of graphitized multiwalled carbon nanotubes: MWCNT-20 (diameter: 20-70 nm) and MWCNT-80 (diameter: 80-150 nm). The analysis of the reaction kinetics indicates that the oxidation of MWCNT-20 and MWCNT-80 mixed with no NaCl exhibits single reaction processes with activation energies of E(a) = 159 and 152 kJ mol(-1), respectively. The oxidation reaction in the presence of NaCl is shown to consist of two different reaction processes, that is, a first reaction and a second reaction process. The first reaction process is dominant at a low temperature of around 600 degrees C, while the second reaction process becomes more dominant than the first one in a higher temperature region. The activation energies of the first reaction processes (MWCNT-20: E(a1) = 35.7 kJ mol(-1); MWCNT-80: E(a1) = 43.5 kJ mol(-1)) are much smaller than those of the second reaction processes (MWCNT-20: E(a2) = 170 kJ mol(-1); MWCNT-80: E(a2) = 171 kJ mol(-1)). The comparison of the kinetic parameters and the results of the spectroscopic and microscopic analyses imply that the lowering of the oxidation temperature in the presence of NaCl results from the introduction of disorder into the graphitized MWCNTs (during the first reaction process), thus increasing the facility of the oxidation reaction of the disorder-induced nanotubes (in the second reaction process). It is found that the larger nanopits and cracks on the outer graphitic layers are caused by the catalytic effect of NaCl. Therefore, the NaCl-mixed samples showed more rapid and stronger oxidation compared with that of the nonmixed samples at the same residual quantity.  相似文献   

3.
在密度泛函理论B3LYP/6-31G*水平上,研究了ClONO2+Cl(2P3/2)Cl2+NO3和ClONO2+Cl(2P3/2)ClO+ClONO(cis)及ClONO2+Cl(2P3/2)ClOCl+NO2的反应机理.计算得到各可能反应途径的过渡态,并经过内禀反应坐标(IRC)分析加以证实.反应ClONO2+Cl(2P3/2)Cl2+NO3反应活化能垒最低,为4.5kJ/mol,是反应主通道.  相似文献   

4.
Metathesis (exchange) reactions offer the possibility of controlling temperature through a judicious choice of precursors. Here, a reaction between AlCl(3) and Ca(3)N(2) is found to produce phase-pure aluminum nitride (AlN) in seconds. The CaCl(2) byproduct salt, whose formation drives this highly exothermic reaction, is simply washed away after reaction completion. SEM images demonstrate that the AlN product is a micron-sized powder, while TEM shows well-formed crystallites. Thermodynamic calculations indicate that a reaction temperature of 2208 K could be reached under adiabatic conditions. Using an in situ thermocouple and a stainless steel reactor vessel to hold the precursors, a reaction temperature of 1673 K is measured 0.8 s after initiation. Switching to a thermally insulating ceramic vessel produces a maximum reaction temperature of 2010 K because of the more nearly adiabatic conditions. The high reaction temperature appears to be critical to forming phase-pure AlN. Experiments with Li(3)N, instead of Ca(3)N(2), produce lower temperatures (1513 K), resulting in both Al and Al(2)O(3) impurities.  相似文献   

5.
2-苯基吲哚 (1a) 在甲醇中的染料敏化光氧化反应给出2-苯基-2-(2'-苯基-3'-吲哚基)二氢吲哚-3-酮 (2a) 和2-甲氧基-2-苯基二氢吲哚-3-酮 (4a), 相应N-甲基取代产物由1-甲基-2-苯基吲哚 (1b) 的类似反应获得。发现反应产物分布随吲哚 (1) 的浓度和介质酸度的变化而变化。对反应机理进行了推测, 其中当1a的反应在乙腈中进行时, 分离到了相应的反应中间体: 2-苯基-3H-吲哚-3-酮 (3a)。  相似文献   

6.
The reaction of N(4S)+CH3X(X=Cl、Br) was studied by the ab initio method. The geometries of the reactants, transition states and products were optimized at the MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single-point calculations for all the stationary points were carried out at the MP2/6-311++G(3df,2p) and the QCISD(T)/6-311+G(d,p) levels using the MP2/6-311+G(d,p) optimized geometries. The energies of all the stationary points were calculated by the G2MP2 method. The results of this theoretical study indicate that the reaction has three reaction channels: H abstraction reaction channel a, Cl or Br abstraction reaction channel b and substitution reaction channel c. For the N(4S)+CH3Cl reaction, reaction channel a is the main reaction channel. Reaction channels b and c may have a slight contribution in the reaction. For the N(4S)+CH3Br reaction, reaction channel a is the main reaction channel. Reaction channels b and c may have some contribution in the reaction.  相似文献   

7.
居冠之  陈德展 《化学学报》1990,48(8):731-736
我们利用超球坐标对共线Cl+HCl(V-3)→ClH(V'≤3)+Cl作了一维精确量子计算,计算所用势能面是LEPS型,Et=-3.23KJ/mol, 得到了态态反应几率等动力学信息, 通过分析结果发现, 反应是振动绝热的, 即以对角(V'-V')反应几率为主,非对角(V' V')反应几率小于0.1, 反应几率随总能量表现出强裂地振荡, 在有阱的势能面上动力学共振增强。  相似文献   

8.
Nanosecond time-resolved resonance Raman (ns-TR(3)) spectroscopy was employed to investigate the photoinduced reactions of 3-(hydroxymethyl)benzophenone (1) in acetonitrile, 2-propanol, and neutral and acidic aqueous solutions. Density functional theory calculations were utilized to help the interpretation of the experimental spectra. In acetonitrile, the neutral triplet state 1 [denoted here as (m-BPOH)(3)] was observed on the nanosecond to microsecond time scale. In 2-propanol this triplet state appeared to abstract a hydrogen atom from the solvent molecules to produce the aryphenyl ketyl radical of 1 (denoted here as ArPK of 1), and then this species underwent a cross-coupling reaction with the dimethylketyl radical (also formed from the hydrogen abstraction reaction) to form a long-lived light absorbing transient species that was tentatively identified to be mainly 2-(4-(hydroxy(3-(hydroxymethyl)phenyl)methylene)cyclohexa-2,5-dienyl)propan-2-ol. In 1:1 H(2)O:CH(3)CN aqueous solution at neutral pH, (m-BPOH)(3) reacted with water to produce the ArPK of 1 and then underwent further reaction to produce a long-lived light absorbing transient species. Three photochemical reactions appeared to take place after 266 nm photolysis of 1 in acidic aqueous solutions, a photoreduction reaction, an overall photohydration reaction, and a novel photoredox reaction. TR(3) experiments in 1:1 H(2)O:CH(3)CN aqueous solution at pH 2 detected a new triplet biradical species, which is associated with an unusual photoredox reaction. This reaction is observed to be the predominant reaction at pH 2 and seems to face competition from the overall photohydration reaction at pH 0.  相似文献   

9.
A new polystyrene anchored Pd(II) azo complex has been synthesized and characterized. The present Pd(II) azo complex behaves as a very efficient heterogeneous catalyst in the Suzuki coupling and Sonogashira coupling reaction in water medium. Aryl halides, coupled with phenylboronic acids (Suzuki-Miyaura reaction) or terminal alkyne (Sonogashira reaction), smoothly afford the corresponding cross-coupling products in excellent yields (83-100% yield for Suzuki reaction and 68-96% yield for Sonogashira reaction of aryl halides) under phosphine-free reaction conditions in the presence of polystyrene anchored Pd(II) azo complex catalyst in water medium. Furthermore, the catalyst has shown good thermal stability and recyclability. This polymer-supported Pd(II) catalyst could be easily recovered by simple filtration of the reaction mixture and reused for more than six consecutive trials without a significant loss of its catalytic activity.  相似文献   

10.
The reflected shock tube technique with multipass absorption spectrometric detection (at a total path length of approximately 1.75 m) of OH-radicals at 308 nm has been used to study the dissociation of CF3-radicals [CF3 + Kr --> CF2 + F + Kr (a)] between 1,803 and 2,204 K at three pressures between approximately 230 and 680 Torr. The OH-radical concentration buildup resulted from the fast reaction F + H2O --> OH + HF (b). Hence, OH is a marker for F-atoms. To extract rate constants for reaction (a), the [OH] profiles were modeled with a chemical mechanism. The initial rise in [OH] was mostly sensitive to reactions (a) and (b), but the long time values were additionally affected by CF2 + OH --> CF2O + H (c). Over the experimental temperature range, rate constants for (a) and (c) were determined from the mechanistic fits to be kCF3+Kr = 4.61 x 10-9 exp(-30,020 K/T) and kCF2+OH = (1.6 +/- 0.6) x 10-10, both in units of cm3 molecule-1 s-1. Reaction (a), its reverse recombination reaction reaction (-a), and reaction (c) are also studied theoretically. Reactions (c) and (-a) are studied with direct CASPT2 variable reaction coordinate transition state theory. A master equation analysis for reaction (a) incorporating the ab initio determined reactive flux for reaction (-a) suggests that this reaction is close to but not quite in the low-pressure limit for the pressures studied experimentally. In contrast, reaction (c) is predicted to be in the high-pressure limit due to the high exothermicity of the products. A comparison with past and present experimental results demonstrates good agreement between the theoretical predictions and the present data for both (a) and (c).  相似文献   

11.
Osako T  Ueno Y  Tachi Y  Itoh S 《Inorganic chemistry》2004,43(21):6516-6518
A novel C-S bond formation reaction took place, when a lithium phenolate derivative was treated with a disulfide-bridged dicopper(I) complex or a bis(micro-thiolato)dicopper(II) complex under very mild conditions. The reaction has been suggested to proceed via a disulfide-bridged (micro-phenoxo)dicopper(I) complex as the common reaction intermediate. Copper(II) complexes of the modified ligands containing a thioether group (products of the C-S bond formation reaction) have been isolated and structurally characterized by X-ray analysis as model compounds of the active site of galactose oxidase. Mechanism of the C-S bond formation reaction is also discussed in relation to the biosynthetic mechanism of the organic cofactor Tyr-Cys of galactose oxidase.  相似文献   

12.
The catalytic water formation reaction on Pt(111) was investigated by kinetic Monte Carlo simulations, where the interaction energy between reaction species and the high mobility of H(2)O molecule was considered. Results obtained clearly reproduce the scanning tunneling microscopy images which show that the reaction proceeds via traveling the reaction fronts on the O-covered Pt(111) surface by creating H(2)O islands backwards. The reaction front is a mixed layer of OH and H(2)O with a (square root 3 x square root 3)R30(o) structure. Coverage change during the reaction is also reproduced in which the reaction consists of three characteristic processes, as observed by the previous experiments. The simulation also revealed that the proton transfer from H(2)O to OH plays an important role to propagate the water formation.  相似文献   

13.
The interaction between methane and gold(I) acetylacetonate via electrophilic substitution (reaction (I)) and oxidative addition (reaction (II)) is simulated. In both cases, the formation of the products is thermodynamically favorable: the decrease in energy is 31 kcal/mol for reaction (I) and 26 kcal/mol for reaction (II). The product of reaction (II) is additionally stabilized by Au-H interaction. Both reactions have a low activation barrier and proceed via the formation of structurally different methane complexes reducing the energy of the system by 9.3 kcal/mol for reaction (I) and by 10.9 kcal/mol for reaction (II). The complex [Au(H2O)(acac)] is also capable of forming methane complexes. These complexes result from a thermally neutral reaction and turn into products after overcoming a low energy barrier. The structure of the complex activating methane in the gold-rutin system is deduced from the data obtained.  相似文献   

14.
The effect of a single water molecule on the OH + HOCl reaction has been investigated. The naked reaction, the reaction without water, has two elementary reaction paths, depending on how the hydroxyl radical approaches the HOCl molecule. In both cases, the reaction begins with the formation of prereactive hydrogen bond complexes before the abstraction of the hydrogen by the hydroxyl radical. When water is added, the products of the reaction do not change, and the reaction becomes quite complex yielding six different reaction paths. Interestingly, a geometrical rearrangement occurs in the prereactive hydrogen bonded region, which prepares the HOCl moiety to react with the hydroxyl radical. The rate constant for the reaction without water is computed to be 2.2 × 10(-13) cm(3) molecule(-1) s(-1) at room temperature, which is in good agreement with experimental values. The reaction between ClOH···H(2)O and OH is estimated to be slower than the naked reaction by 4-5 orders of magnitude. Although, the reaction between ClOH and the H(2)O···HO complex is also predicted to be slower, it is up to 2.2 times faster than the naked reaction at altitudes below 6 km. Another intriguing finding of this work is an interesting three-body interchange reaction that can occur, that is HOCl + HO···H(2)O → HOCl···H(2)O + OH.  相似文献   

15.
The kinetics of the reaction of several alcohols (benzyl alcohol, ethanol, 1-phenylethanol, cyclohexanol, and 1-methyl-1-phenylethanol) with a selection of anhydrides (acetic anyhydride, propionic anhydride, isobutyric anhydride, isovaleric anhydride, and pivalic anhydride) as catalyzed by 4-(N,N-dimethylamino)pyridine (DMAP)/triethyl amine have been studied in CH(2)Cl(2) at 20 degrees C. In all cases the reaction kinetics can be described by rate laws containing a DMAP-catalyzed term and an uncatalyzed (background) term. The rate constants for the background reaction respond sensitively to changes in the steric demand of the alcohol and the anhydride substrates, making the reaction of cyclohexanol with acetic anhydride 526 times faster than the reaction with pivalic anhydride. Steric effects are even larger for the catalyzed reaction and the reactivity difference between acetic and pivalic anhydride exceeds a factor of 8000 for the reaction of cyclohexanol. There is, however, no linear correlation between the steric effects on the catalyzed and the uncatalyzed part. As a consequence there are substrate combinations with dominating catalytic terms (such as the reaction of benzyl alcohol with isobutyric anhydride), while other substrate combinations (such as the reaction of cyclohexanol with pivalic anhydride) are characterized through a dominating background process. The implications of these findings for the kinetic resolution of alcohols are discussed.  相似文献   

16.
The atomic alignment effect has been studied for the dissociative energy transfer reaction of metal carbonyls (Fe(CO)(5), Ni(CO)(4)) with the oriented Ar ((3)P(2), M(J) = 2). The emission intensity from the excited metal products (Fe*, Ni*) has been measured as a function of the atomic alignment in the collision frame. The selectivity of the atomic orbital alignment of Ar ((3)P(2), M(J) = 2) (rank 2 moment, a(2)) is found to be opposite for the two reaction systems; the Fe(CO)(5) reaction is favorable at the Π configuration (positive a(2)), while the Ni(CO)(4) reaction is favorable at the Σ configuration (negative a(2)). Moreover, a significant spin alignment effect (rank 4 moment, a(4)) is recognized only in the Ni(CO)(4) reaction. The atomic alignment effect turns out to be essentially different between the two reaction systems; the Fe(CO)(5) reaction is controlled by the configuration of the half-filled 3p atomic orbital of Ar ((3)P(2)) in the collision frame (L dependence), whereas the Ni(CO)(4) reaction is controlled by the configuration of the total angular moment J (including spin) of Ar ((3)P(2)) in the collision frame (J dependence). As the origin of J dependence observed only in the Ni(CO)(4) reaction, the correlation (and/or the interference) between two electron exchange processes via the electron rearrangements is proposed.  相似文献   

17.
We use a first-principles calculation and small-angle neutron scattering (SANS) to investigate the mechanism and the nanosize products of the sol-gel reaction with diphenylsilanediol (DPD) and 3-methacryloxypropyltrimethoxysilane (MEMO) precursors in synthesizing a hybrid waveguide material. It is predicted that switching between a DPD hydroxyl and a MEMO methoxy with a reaction rate of 6.8 x 10(-6) s(-1) at 300 K is the fastest process for the first reaction step, thus generating diphenylmethoxysilanol (DPM) and 3-methacryloxypropyldimethoxysilanol (MEDO) as products. However, we determine that this reaction pathway could be modified by the presence of the H2O released from a catalyst such as Ba(OH)2.H2O. Next, switching between the DPM hydroxyl and the MEDO methoxy is followed to generate diphenyldimethoxysilane (DPDM) and 3-methacryloxypropylmethoxysilanediol (MEMDO). However, condensation between a MEMDO hydroxyl and a DPDM methoxy is found to be most favorable for the third reaction step, which generates the DPDM-MEMDO dimer and CH3OH molecule as products. In a similar fashion, a DPDM methoxy of the DPDM-MEMDO dimer can condense with a MEMDO hydroxyl of the second DPDM-MEMDO dimer to increase the chain, but its reaction rate of 2.8 x 10(-11) s(-1) is predicted to be about 5 times smaller than that between a DPDM methoxy and a MEMDO hydroxyl. This implies that the reaction rate for the larger nanostructures becomes smaller. Additionally, our SANS measurements determine that the final products from our sol-gel reaction are on the nanometer scale, at sizes from 1.76 to 2.36 nm.  相似文献   

18.
An experimental, temperature-dependent kinetic study of the gas-phase reaction of the hydroxyl radical with molecular bromine (reaction 1) has been performed by using a pulsed laser photolysis/pulsed-laser-induced fluorescence technique over a wide temperature range of 297-766 K, and at pressures between 6.68 and 40.29 kPa of helium. The experimental rate coefficients for reaction 1 demonstrate no correlation with pressure and exhibit a negative temperature dependence with a slight negative curvature in the Arrhenius plot. A nonlinear least-squares fit with two floating parameters of the temperature-dependent k(1)(T) data set using an equation of the form k(1)(T) = AT(n) yields the recommended expression k(1)(T) = (1.85 x 10(-9))T(-0.66) cm(3) molecule(-1) s(-1) for the temperature dependence of the reaction 1 rate coefficient. The potential energy surface (PES) of reaction 1 was investigated with use of quantum chemistry methods. The reaction proceeds through formation of a weakly bound OH...Br(2) complex and a PES saddle point with an energy below that of the reactants. Temperature dependence of the reaction rate coefficient was modeled by using the RRKM method on the basis of the calculated PES.  相似文献   

19.
研究在高氯酸银作用下,三苯基环戊二烯扩环氧化生成三苯基取代吡喃盐的反应,并初步探讨了反应机理  相似文献   

20.
In study on the growth reaction mechanism of Eu-doped ZnO nanowire(NW), the intermedium of reaction is characterized by measures such as FTIR. Besides, the influences of polyethyleneimine(PEI) on morphology, structure and photoelectric property of NW are observed by SEM, TEM, XRD, UV-vis and PL spectrum. According to the result, it manifests that Eu-doped ZnO NW array growth response experiences six mutually associated reaction processes in PEI-HMTA system:(a) chelation reaction of PEI and Zn~(2+) Eu~(3+);(b) protonation reaction of PEI and NH_3;(c) decomposition reaction of hexamethylenetetramine(HMTA);(d) Mannich reaction of HCHO and PEI;(e) formation of precursor of Eu-doped ZnO;(f) dehydration condensation of Eu-doped ZnO precursors, further forming a doped ZnO NW array. Among them, PEI is the key factor of the whole doping growth reaction process. It both plays a role in modifying the growth of ZnO NW and makes it become longer and thinner. In the meantime, it also facilitates doping of Eu and enables ZnO NW to capture more photoelectrons and higher transmission rate, which is critical to improve photovoltaic performance of optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号