首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A field expedient analytical method for detecting the chemical warfare agent (CWA) sulfur mustard as a soil contaminant was developed using solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). Five commercially available SPME fibers were investigated to determine the optimal fiber, and extraction conditions. Polyacrylate and carbowax-divinylbenzene fiber coatings gave a statistically indistinguishable and best response compared to the other three types examined in a simple system studied without soil. The polyacrylate fiber coating was selected for study of a system in which sulfur mustard was spiked to an agricultural soil (Standard Reference Material 2709, San Joaquin type). With soil samples, the greatest sensitivity occurred by the addition of deionized water to spiked soil and extraction at ambient temperature for 20 min or longer. SPME sampling with GC-MS analyses afforded good reproducibility (relative standard deviation between 2 and 10%), and analyte concentrations as low as 237 ng/g were detected in soil (total ion chromatograms). As completed here, total time for sampling and analysis was just under 1 h, and use of organic solvents or special sample introduction equipment was avoided.  相似文献   

2.
Headspace solid-phase microextraction (SPME) has been developed for the analysis of common organophosphorus pesticides in soil. Factors such as adsorption-time, sampling temperature and matrix modification by addition of water were carefully considered to optimize the extraction efficiency. This technique could achieve limits of detection of 143 ng/g for Malathion and Parathion, and 28.6 ng/g for Phorate, Diazinon and Disulfoton in humic soil when the extracted sample was analyzed by gas chromatography-flame ionization detector (GC-FID). Lower limits of detection of 28.6 ng/g for Malathion and Parathion, and 14.3 ng/g for Phorate, Diazinon and Disulfoton can be achieved by analyzing the extracted sample with gas chromatography/mass spectrometric detector (GC/MS). As the extraction efficiency was generally better when analyzing sandy soil, the limits of detection are envisaged to be even better for such a matrix. The technique was found to be reliable with good precision of about 6.5% RSD for the sandy soil and about 15% for the humic material. The poorer precision of extraction from the humic material is probably related to the poorer homogeneity of this material. The linearity of extraction was good with linear calibration in the range of 0.143 to 28.6 μg/g. Finally, headspace SPME was compared to aqueous extraction of soil followed by SPME (LE-SPME). The recoveries obtained by headspace SPME were comparable to those from liquid-liquid extraction of soil followed by SPME. However, the analysis of headspace SPME has less background interference. Perhaps, the greatest advantage of this technique is its non-destructive nature so that it is possible to perform further laboratory analysis of the samples after headspace SPME has been carried out.  相似文献   

3.
Headspace solid-phase microextraction (SPME) has been developed for the analysis of common organophosphorus pesticides in soil. Factors such as adsorption-time, sampling temperature and matrix modification by addition of water were carefully considered to optimize the extraction efficiency. This technique could achieve limits of detection of 143 ng/g for Malathion and Parathion, and 28.6 ng/g for Phorate, Diazinon and Disulfoton in humic soil when the extracted sample was analyzed by gas chromatography-flame ionization detector (GC-FID). Lower limits of detection of 28.6 ng/g for Malathion and Parathion, and 14.3 ng/g for Phorate, Diazinon and Disulfoton can be achieved by analyzing the extracted sample with gas chromatography/mass spectrometric detector (GC/MS). As the extraction efficiency was generally better when analyzing sandy soil, the limits of detection are envisaged to be even better for such a matrix. The technique was found to be reliable with good precision of about 6.5% RSD for the sandy soil and about 15% for the humic material. The poorer precision of extraction from the humic material is probably related to the poorer homogeneity of this material. The linearity of extraction was good with linear calibration in the range of 0.143 to 28.6 μg/g. Finally, headspace SPME was compared to aqueous extraction of soil followed by SPME (LE-SPME). The recoveries obtained by headspace SPME were comparable to those from liquid-liquid extraction of soil followed by SPME. However, the analysis of headspace SPME has less background interference. Perhaps, the greatest advantage of this technique is its non-destructive nature so that it is possible to perform further laboratory analysis of the samples after headspace SPME has been carried out. Received: 13 July 1998 / Revised: 10 November 1998 / Accepted: 17 November 1998  相似文献   

4.
The feasibility of direct-immersion (DI) solid-phase microextraction (SPME) and headspace (HS) SPME for the determination of high-ring polycyclic aromatic hydrocarbons (PAHs) (4- to 6-ring PAHs) in water and soil samples is studied. Three SPME fibers--100- and 30-microm polydimethylsiloxane (PDMS) and 85-microm polyacrylate (PA) fibers-are compared for the effective extraction of PAHs. Parameters affecting the sorption of PAHs into the fiber such as sampling time, sampling volume, and temperature are also evaluated. The extracted amounts of high-ring PAHs decrease with the decreasing of film thickness, and the 100-microm PDMS has the highest extraction efficiency than 85-microm PA and 30-microm PDMS fibers. Also, the extraction efficiency decreases with the increasing molecular weights of PAHs. Of the 10 high-ring PAHs, only fluoranthene and pyrene can reach equilibrium within 120 min at 25 degrees C for DI-SPME in a water sample. Increasing the temperature to 60 degrees C can increase the sensitivity of PAHs and shorten the equilibrium time. A 0.7- to 25-fold increase in peak area is obtained for DI-SPME when the working temperature is increased to 60 degrees C. For HS-SPME, the extraction efficiency of PAHs decrease when the headspace volume of the sampling system increases. All high-ring PAHs can be detected in a water sample by increasing the temperature to 80 degrees C. However, only 4- and 5-ring PAHs can be quantitated in a CRM soil sample when HS-SPME is used. The addition of a surfactant with high hydrophilic property can effectively enhance the sensitivity of high-ring PAHs. HS-SPME as well as DI-SPME with 100-microm PDMS or 85-microm PA fibers are shown to be suitable methods for analyzing high-ring PAHs in a water sample; however, this technique can only apply in a soil sample for PAHs having up to 5 rings.  相似文献   

5.
Nafion/活性炭涂层固相微萃取探头的制备与应用研究   总被引:4,自引:0,他引:4  
采用Nafion和活性炭粉末作为固相涂层在不锈钢丝上交替涂制了固相微萃取探头(SPME),研究了它的特性,并与商品类似探头和单纯的Nafion探头作了比较。该探头可比商品探头(SPME)的富集率高1个数量级。由于Nafion有很强的极性,因此它对极性化合物有很强的萃取能力,适合萃取醇等物质。用该探头测定了醇类、酯类物质,检出限低于10ng/mL,相对标准偏差RSD<6 3%。  相似文献   

6.
An analytical procedure was developed using headspace solid-phase microextraction (HS-SPME) for the determination of organochlorine pesticides (OCPs) and their metabolites in sandy soil samples. The developed procedures involving fiber selection, temperature effect, absorption time, soil matrix and the addition of solvents of different polarity were optimized. Also, the results were compared to those achieved using Soxhlet extraction standard method. The 100-microm polydimethylsiloxane (PDMS) and 65-microm PDMS-divinylbenzene showed good extraction efficiency for 18 organochlorine pesticides. An increase in the extraction efficiency of organochlorine pesticides and the metabolites was observed when the temperature increased, and an optimum temperature of 70 degrees C for extracting OCPs was obtained. The application of other hydrophilic solvents had different effects on the extraction of organochlorine pesticides and the metabolites. Higher responses of OCPs were obtained when 5 ml of water was added to the soil. Good linearity of OCPs between 0.2 and 4 ng/g soil was observed. The relative standard deviation was found to be lower than 25%. Also the limits of detection were between 0.06 and 0.65 ng/g, which were lower than those obtained using Soxhlet extraction. Moreover, the optimized HS-SPME procedure was applied to the analysis of OCPs in certified reference material (CRM) 804-050 soil and compared with Soxhlet extraction procedure. Results obtained in this study were in good agreement with those obtained using Soxhlet extraction. The mean values obtained using HS-SPME technique were in the range of 16.5 to 1459.6 mg/kg, which corresponds to the recoveries of 68% to 127% of the certified values of CRM soil.  相似文献   

7.
This study presents the potential of multiple headspace solid-phase microextraction (multiple HS-SPME) for the quantification of analytes in solid samples. Multiple HS-SPME shares the same advantages as SPME. It also enables a complete recovery of the target compound and therefore the matrix effect, which commonly appears in SPME-based analysis, is avoided. A method based on multiple HS-SPME for the determination of the toxic contaminant ethyl carbamate (EC) in bread samples has been developed and validated, using gas chromatography with flame ionization detector. A novel polyethylene glycol/hydroxy-terminated silicone oil fiber was prepared for the first time and subsequently used instead of commercial ones because of its high extraction ability and good operational stability. An important problem still remained in multiple HS-SPME of EC in fresh bread samples. The adsorption of EC by water in the samples caused low transport of analyte to the headspace, which made multiple HS-SPME invalidated. Mixing with anhydrous sodium sulphate, the sensitivity of the method was improved and the problem was solved. The proposed method showed satisfactory linearity (0.15–1500 μg g−1), precision (1.6%, n = 5) and limit of detection (0.041 μg g−1). Good recoveries, from 92.5 to 103.4%, were observed at three spiking levels. The method was applied to 14 bread samples. The multiple HS-SPME technique offers several advantages including reducing the manipulation time and cost, and avoiding analyte losses, especially in the analysis of a large number of samples in different matrices.  相似文献   

8.
Zhang X  Ye C  Zou G  Han Y  Li X 《色谱》2011,29(8):701-705
氨基甲酸乙酯(EC)是发酵食品在发酵或贮存过程中产生的致癌副产物。建立了多次顶空固相微萃取-气相色谱法(MHS-SPME-GC)检测多种酒精饮料中EC的方法。采用自制的溶胶-凝胶聚乙二醇/羟基硅油复合SPME萃取头提高了方法的灵敏度,加入无水硫酸钠对基质进行修饰大大提高了EC的萃取效率。在优化条件下,方法的线性范围为0.04~100 mg/L,线性相关系数为0.9997,检出限为34 μg/L;方法重现性好,6次重复实验所得相对标准偏差为2.19%;准确度高,加标回收率在90.9%~103.6%之间。将建立的方法用于多种实际酒样中EC的检测,其结果与标准加入法得到的结果在统计学上无显著差异。本研究表明,MHS-SPME能够克服通常存在于SPME分析中的基质干扰效应,尤其适合于大量不同基质的样品分析。  相似文献   

9.
A new solid-phase microextraction fiber based on alumina/titania sol-gel-coated on copper wire for headspace sampling of chlorinated organic solvents (chloroform, carbon tetrachloride, trichloroethene, and tetrachloroethene) from urine samples is introduced. The influences of fiber coating composition and microextraction conditions (extraction temperature, extraction time, and ionic strength of the sample matrix) on the fiber performance were investigated. Also, the influence of temperature and time on desorption of analytes from fiber was studied. The proposed fiber has high capacity and demonstrates fast sampling of chlorinated organic solvents from urine samples with high sensitivity. The relative standard deviation (RSD, n=5) for all analytes was below 6.5%.  相似文献   

10.
A fully automated procedure using headspace solid-phase microextraction (HS-SPME) followed by gas chromatographic/tandem mass spectrometric (GC/MS/MS) detection was developed for the determination of the toxic contaminant ethyl carbamate (EC) in stone-fruit spirits. After addition of deuterated internal standard, the optimised HS-SPME extraction with carbowax/divinylbenzene fibres (30 min at 70 degrees C) was done applying salting out with sodium chloride in the presence of pH 7 buffer solution. For quantitative analysis the characteristic fragmentations of m/z 74>44 and m/z 62>44 for ethyl carbamate as well as m/z 64>44 for ethyl carbamate-d5 were monitored in the multiple reaction monitoring (MRM) mode using a triple quadrupole instrument. In the validation studies, ethyl carbamate exhibited good linearity with a regression coefficient of 0.998. The limits of detection and quantitation were 0.03 and 0.11 mg/l. The precision never exceeded 4.3% (intraday) and 8.2% (interday) at any of the concentrations examined. A good agreement of analysis results in comparison to conventional sample clean-up over diatomaceous earth columns was found (R = 0.956, Bias = 0.08 mg/l). The new HS-SPME/GC/MS/MS procedure is suitable for the fast, reliable and inexpensive determination of ethyl carbamate in alcoholic beverages in an automated, and therefore, convenient procedure.  相似文献   

11.
By combining 5,10,15,20-tetra(4-chlorine)phenylporphyrin(TClPP) and α-Keggin polyoxometalate H5PV2Mo10O40(H5PVMo) via a simple ion-exchange method, an organic-inorganic hybrid material[C44H28N4Cl4]1.5[H2PMo10V2O40]·2C2H6O(H2TClPP-H2PVMo) was prepared and thoroughly characterized by a variety of techni...  相似文献   

12.
Zhao W  Ouyang G  Pawliszyn J 《The Analyst》2007,132(3):256-261
The in-fibre standardization method is a novel approach that has been developed for field sampling/sample preparation, in which an internal standard is pre-loaded onto a solid-phase microextraction (SPME) fibre for calibration of the extraction of target analytes in field samples. The same method can also be used for in-vial sample analysis. In this study, different techniques to load the standard to a non-porous SPME fibre were investigated. It was found that the appropriateness of the technique depends on the physical properties of the standards that are used for the analysis. Headspace extraction of the standard dissolved in pumping oil works well for volatile compounds. Conversely, headspace extraction of the pure standard is an effective approach for semi-volatile compounds. For compounds with low volatility, a syringe-fibre transfer method and direct extraction of the standard dissolved in a solvent exhibited a good reproducibility (<5% RSD). The main advantage of the approaches investigated in this study is that the standard generation vials can be reused for hundreds of analyses without exhibiting significant loss. Moreover, most of the standard loading processes studied can be performed automatically, which is efficient and precise. Finally, the standard loading technique and in-fibre standardization method were applied to a complex matrix (milk) and the results illustrated that the matrix effect can be effectively compensated for with this approach.  相似文献   

13.
A novel method of determining organochlorine pesticides (OCPs) is described. It is based on solid-phase microextraction (SPME) and gas chromatography–electron capture detection. During the development of the method, soil samples were prepared, spiked with standard solution, and then aged for some time. Extraction conditions such as the extraction time, the NaCl content, the volume of water, the extraction temperature and the desorption time were investigated and optimized. The limits of detection obtained using the method ranged from 0.10 to 0.51 ng g−1, and relative standard deviations were lower than 10% for most organochlorine pesticides. Real soil samples were successfully analyzed using the proposed method. The results from the method developed here were in good agreement with those obtained using ultrasonic extraction. The result demonstrates that aging soils spiked with standard solution is an important method development step, because the soil samples obtained using this approach are more like real soils than those obtained when aging is not used.   相似文献   

14.
3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) was first used as precursor as well as selective stationary phase to prepare the sol-gel-derived TMSPMA-hydroxyl-terminated silicone oil (TMSPMA-OH-TSO) solid-phase mircroextraction (SPME) fibers for the analysis of aroma compounds in beer. TMSPMA-OH-TSO was a medium polarity coating, and was found to be very effective in carrying out simultaneous extraction of both polar alcohols and fatty acids and nonpolar esters in beer. The extraction temperature, extraction time, and ionic strength of the sample matrix were modified to allow for maximium sorption of the analytes onto the fiber. Desorption temperature and time were optimized to avoid the carryover effects. To check the matrix effects, several different matrices, including distilled water, 4% ethanol/water (v/v) solution, a concentrated synthetic beer, a "volatile-free" beer and a real beer were investigated. Matrix effects were compensated for by using 4-methyl-2-pentanol as internal standard and selecting the "volatile-free" beer as working standard. The method proposed in this study showed satisfactory linearity, precision and detection limits and accuracy. The established headspace SPME-gas chromatography (GC) method was then used for determination of volatile compounds in four beer varieties. The recoveries obtained ranged from 92.8 to 105.8%. The relative standard deviations (RSD, n = 5) for all analytes were below 10%. The major aroma contributing substances of each variety were identified via aroma indexes.  相似文献   

15.
Monitoring the trace amount of chemicals in various samples remains a challenge. This study was conducted to develop a new solid-phase microextraction (SPME) system (inside-tube SPME) for trace analysis of n-hexane in air and urine matrix. The inside-tube SPME system was prepared based on the phase separation technique. A mixture of carbon aerogel and polystyrene was loaded inside the needle using methanol as the anti-solvent. The air matrix of n-hexane was prepared in a Tedlar bag, and n-hexane vapor was sampled at a flow rate of 0.1 L/min. Urine samples spiked with n-hexane were used to simulate the sampling method. The limit of detection using the inside-tube SPME was 0.0003 μg/sample with 2.5 mg of adsorbent, whereas that using the packed needle was 0.004 μg/sample with 5 mg of carbon aerogel. For n-hexane analysis, the day-to-day and within-day coefficient variation were lower than 1.37%, with recoveries over 98.41% achieved. The inside-tube SPME is an inter-link device between two sample preparation methods, namely, a needle trap device and an SPME system. The result of this study suggested the use of the inside-tube SPME containing carbon aerogel (adsorbent) as a simple and fast method with low cost for n-hexane evaluation.  相似文献   

16.
实验以丙烯酸丁酯和苯乙烯为单体 ,过氧化苯甲酰为引发剂 ,醋酸丁酯和甲苯作混合溶剂 ,溶剂用量与单体混合物的体积相同。采用溶液聚合的方法合成了一种新型固相微萃取吸附质 (苯乙烯 -丙烯酸丁酯共聚物 ) ,研究了此聚合物作为固相微萃取吸附质的性能。用顶空萃取法对水中低级芳烃化合物进行了萃取实验 ,考察了此高聚物涂层的热稳定性及单体比例与萃取率的关系。将自制涂层与PDMS涂层对低级芳烃化合物萃取量进行了比较 ,反映了苯乙烯 丙烯酸丁酯聚合物涂层的特点。  相似文献   

17.
Most headspace solid-phase microextraction (HS-SPME) volatile analysis methods have been developed for aqueous samples and have been either adapted or applied to complex matrices. This study examines sample/headspace equilibrium based on realistic (non-spiked) concentration levels in real complex sample matrices (grapes and wine) with a systematic multivariate statistical approach. The presence and absence of matrix effects are explained through exponential and linear relationships, respectively. The potential of over- and underestimating volatile compounds in a diluted sample is illustrated and the common dilution equation (C1V1=C2V2) is shown to not always apply to headspace volatile analysis. Additionally, sample dilution was shown to be more sensitive to matrix effects than sample/headspace volume variations with the latter showing analyte dependency. An optimum sample size of 6.9-8.6g in a 20mL vial without dilution was observed. This study shows that sensitivity and limit of detection (LOD) can be improved to a limit with a subsequent loss - an extension to existing theory. The study further illustrates that in trying to bring an analyte within linear range through sample dilution, sensitivity and LOD can be lost with a probable shift in optimum ranges and sample/headspace equilibrium.  相似文献   

18.
Headspace solid-phase microextraction has been applied to the analysis of volatile phenols in wine. Silica fibre coated with Carbowax-divinylbenzene was found to be more efficient at extracting these compounds than other fibres such as those coated with polydimethylsiloxane, polyacrylate, carboxen-polydimethylsiloxane, and polydimethylsiloxane-divinylbenzene. Different parameters such as extraction time, temperature of the sample during the extraction, ionic strength and sample volume were optimised using a two-level factorial design expanded further to a central composite design, in order to evaluate several possibly influential and/or interacting factors. The headspace (HS)-SPME procedure developed shows adequate detection and quantitation limits, and linear ranges for correctly analysing these compounds in wine. The recoveries obtained were close to 100%, with repeatability values lower than 16%. The method was applied to a variety of white and red wines.  相似文献   

19.
Multiple headspace solid-phase microextraction (HS-SPME) using a novel fiber coated with anilino-methyl triethoxy silicane-methacrylic acid/terminated silicone oil has been introduced as a useful pretreatment technique coupled to gas chromatography-flame ionization detector for the detection of ethyl carbamate in pickles. Anilino-methyl triethoxy silicane and methacrylic acid are put into use simultaneously with the aim to increase the hydrogen interaction strength between ethyl carbamate and the coating. In addition, the new fiber exhibits high thermal stability, good reproducibility, and long lifetime. Extraction temperature, extraction time, amount of desiccant, and amount of sample were well optimized to guarantee the suitability of multiple HS-SPME. Significant matrix interference was observed among various types of pickles and the multiple HS-SPME procedure was proved to be effective in avoiding the matrix effect by a complete recovery of the analyte. The method showed satisfactory linearity (0.1-100 mg kg(-1)), precision (4.25%, n = 5), and detection limit (0.038 mg kg(-1)). The accuracy of the method was evaluated by comparison with standard addition method and the results were statistically equivalent. The study indicates that the multiple HS-SPME procedure is simple, convenient, accurate, and low-cost, and most of all, can be used for quantitative analysis in complex matrix without matrix effect.  相似文献   

20.
Excessive and uncontrolled exposures of the workers to benzene, toluene, ethylbenzene and xylene (BTEX) have currently raised great concerns among industrial hygienist all over the world. Therefore, the effective monitoring of such exposures is assumed to be of prime importance. A cold fiber solid-phase microextraction device based on a cooling capsule as a cooling unit and CO2 as a coolant was applied to quantitatively analyze BTEX in aqueous samples. A gas chromatography with flame ionization detection was recruited to analyze the target analytes, which had been identified according to their retention times. Several factors such as coating temperature, extraction time and temperature, sample volume and sodium content were optimized. Two modes of extraction, i.e., headspace (HS) and headspace cold fiber (HS-CF) in SPME, were investigated and compared under optimized conditions. The results revealed that HS-CF-SPME has the most appropriate outcome for the extraction of BTEX from aqueous samples. Under the optimized conditions, the calibration curves were linear within the range of 0.2–500 ng ml?1 and the detection limits were between 0.02 and 0.07 ng ml?1.The intraday relative standard deviations was lower than about 10%. The method was successfully applied to the determination of BTEX in urine samples with good recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号