首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A beta-turn mimetic in which the four amino acids of a beta-turn have been replaced by a 10-membered ring has been designed, synthesized, and subjected to conformational studies. In the mimetic, the intramolecular CO(i)-HN(i)(+3) hydrogen bond that is often found in beta-turns has been replaced by an ethylene bridge. In addition, the amide bond between residues i and i + 1 was exchanged for a methylene ether isoster. Such a beta-turn mimetic, based on the first four residues of Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu), was prepared in 15 steps. The synthesis relied on a beta-azido alcohol prepared in five steps from Cbz-Tyr(tBu)-OH as a key, i-position building block. tert-Butyl bromoacetate, glycine, and a Phe-Leu dipetide were then used as building blocks for positions i + 1, i + 2, and i + 3, respectively. Conformational studies based on (1)H NMR data showed that the beta-turn mimetic was flexible, but that it resembled a type-II beta-turn at low temperature. This low energy conformer closely resembled the structure determined for crystalline Leu-enkephalin.  相似文献   

2.
The conformational differences caused by N-glycation of the amide bond in endogenous opioid pentapeptide leucine-enkephalin (Tyr-Gly-Gly-Phe-Leu) have been explored in solution using FTIR spectroscopy, NMR and molecular modelling. The compounds studied include protected and unprotected enkephalin analogues N-alkylated at the second (Gly2) amino acid residue with a 6-deoxy-D-galactose moiety (1-3). Comparison of the amide I component bands in the FTIR spectra, measured in trifluoroethanol (TFE), CHCl3 and DMSO, revealed significant differences in the intensity as well as shifts in component band frequencies for glycopeptides 1-3. We found that only the FTIR spectrum of the fully protected compound 1 indicated the presence of a higher population of beta-turns, while the spectra of the partially protected and unprotected glycopeptides 2 and 3 reflected the dominance of unordered or open structures, with some low population of turns. The observed NOE connectivities in CDCl3 for both isomers of the fully protected compound 1, the all-trans one and another with Tyr1-Gly2 peptide bond in cis conformation, indicate the presence of a beta-like turn conformation. Molecular dynamics simulations of the glycopeptide 1 obtained by unconstrained energy minimization of trans- and cis-1 shows that one of trans form conformations is consistent with beta-turn whereas cis isomer has revealed less-compact turn.  相似文献   

3.
Novel constrained beta-turn dipeptide mimetics, 8-phenyl thiaindolizidinone amino acids 3, have been synthesized stereoselectively and incorporated into Leu-enkephalin peptides as a replacement of dipeptide Gly3-Phe4 to afford four individual isomers of Leu-enkephalin analogues 6.  相似文献   

4.
A 10-membered heterocyclic ring system 1,3,8-trisubstituted 2,5,7-trioxo-1,4,8-triazadecane that represents a Ni-to-Ni+ 3-ethylene-bridged partially modified retro-inverso tetrapeptide beta-turn mimetic (EBRIT-BTM) has been designed, synthesized, and structurally analyzed. These compounds utilize an ethylene bridge to replace the COi...HNi + 3 10-membered hydrogen bond of standard beta-turns. The N,N'-ethylene-bridged dimer was obtained in 90% yield by reductive alkylation of phenylalanylamide with a tert-butyl N-(9-fluorenylmethyloxycarbonyl),N-(2-formylmethyl)-glycinate. An orthogonal protection strategy and HATU-mediated couplings allowed efficient stepwise additions of monomeric building blocks leading to a N(i)-to-N(i+3)-ethylene-bridged linear precursor: Further elaboration of the linear precursor generated the ethylene-bridged model compounds (16) and (18) (g, gem-diaminoalkyl; m, malonyl; and r, direction-reversed amino acid residue) in 44 and 39% yields, respectively. The structural features of the two EBRIT-BTM compounds were determined using 1H NMR and extensive computer simulations. The results indicate that the 10-membered rings are conformationally constrained with well-defined structural features and that the three amide bonds in the ring are in the trans orientation. The topological arrangement of the residues in the ring system closely resembles a type II' beta-turn. Transformation of CONH(2) in the N-terminal amino acid residue of 16 into NHCOCH3 in 18 resulted in the formation of a hydrogen bond between the NH of gPhe-COCH3 and the C-terminal carboxyl of Gly, initiating an antiparallel beta-sheet. The formulation of the concept applying a minimalistic structural elaboration approach and the synthetic exploration, together with the conformational analysis, offer a new molecular scaffolding system and a true tetrapeptide secondary structure mimetic that can be used to generate peptidomimetics of biological interest.  相似文献   

5.
ZhongQing Yuan 《Tetrahedron》2005,61(21):4901-4909
LHRH is a decapeptide hormone which plays a central role in neuroendocrinology. Conformational studies have suggested that LHRH may adopt a β-turn involving residues 5-8 when bound to its receptor. A β-turn mimetic with side chains corresponding to those of a Tyr-Gly-Leu-Orn tetrapeptide has therefore been synthesized for incorporation at positions 5-8 in LHRH. In the turn mimetic, residues i and i+1 are connected by a ψ[CH2O] isostere instead of an amide bond, while a covalent ethylene bridge replaces the hydrogen bond which is often found between residues i and i+3 in β-turns. The turn mimetic was assembled from three types of building blocks: an azido aldehyde, an Fmoc protected amino acid and a protected dipeptide amine.  相似文献   

6.
It is known that peptide mimics containing trans-substituted cyclopropanes stabilize extended conformations of oligopeptides, and molecular modeling studies now suggest that the corresponding cis-cyclopropane dipeptide isosteres could stabilize a reverse turn. To begin to assess this possibility, a series of cis-substituted cyclopropanes were incorporated as replacements of the Gly(2)-Gly(3) and Phe(4)-Leu(5) dipeptide subunits in Leu-enkephalin (H(2)N-Tyr-Gly-Gly-Phe-Leu-OH), which is believed to bind to opiod receptors in a conformation containing a beta-turn. General methods for the synthesis of the cyclopropane-containing dipeptide isosteres -XaaPsi[COcpCO]Yaa- and -XaaPsi[NHcpNH]Yaa-were developed by a sequence that featured the enantioselective cyclization of allylic diazoacetates catalyzed by the chiral rhodium complexes Rh(2)[(5S)-MEPY](4) and Rh(2)[(5R)-MEPY](4). A useful modification of the Weinreb amidation procedure was applied to the opening of the intermediate lactones with dipeptides, and a novel method for the synthesis of substituted diaminocyclopropanes was also developed. The Leu-enkephalin analogues were tested in a panel of binding and functional assays, and although those derivatives containing cyclopropane replacements of the Gly(2)-Gly(3) exhibited low micromolar affinity for the mu-receptor, analogues containing such replacements for the Phe(4)-Leu(5) subunit did not bind with significant affinity to any of the opioid receptors. These results are discussed.  相似文献   

7.
The synthesis of 24-membered macrocycles is described, in which rigid xanthene units (X) and/or diphenyl ether units (D) as flexible analogues are linked via urea groups. All four possible combinations (XXX, XXD, XDD, DDD) have been obtained with yields of 40-72% for the cyclisation step. In two cases, the respective cyclic hexamers (XXDXXD, XXXXXX) were also isolated. Two compounds have been characterised by a single crystal X-ray analysis of the free triurea (XXD, XDD) and one example (DDD) by its complex with tetrabutylammonium chloride. It shows the chloride anion in the centre of the macrocycle, held by six NH...Cl- hydrogen bonds. The interaction with various other anions has been studied by 1H NMR. Complexation constants for chloride, bromide and acetate have been measured for all trimers by UV spectrophotometry. Molecular dynamics simulations have been carried out to determine the conformation of the free receptors in chloroform and acetonitrile. They show that in chloroform, intramolecular hydrogen bonding occasionally facilitated by trans-->cis isomerisation of an amide bond dominates the conformation of the macrocycles while in acetonitrile (the solvent used for complexation measurements), the ligating urea NH protons are properly arranged for the complexation of anions, however, their strong solvation is counteractive to the complexation.  相似文献   

8.
In peptides and proteins, the peptide bond between an amino acid and proline exists as an equilibrium mixture of the cis-imide and trans-imide due to the low energy barrier in their interconversion. This feature greatly influences the structure and function of the proline-containing peptides and proteins. Therefore, restricting the amide bond with an (E)- or (Z)-alkene should provide a promising method for elucidating the structure-activity relationships of the peptide and the proteins. In this report, the regio- and stereoselective synthesis of cis-alanylproline (Ala-Pro) type (Z)-alkene dipeptide mimetic is described. The key steps of this synthesis are to introduce a C3 unit onto a gamma-phosphoryloxy-alpha,beta-unsaturated-delta-lactam with an organocopper-mediated anti-S(N)2' reaction and subsequently construct a five-membered proline-like cyclic structure with an intramolecular Suzuki coupling reaction. Hydrolysis of the amide bond in the resulting bicyclic lactam yields the desired cis-Ala-Pro type (Z)-alkene dipeptide isostere. The presented synthetic methodology should be applicable to the general syntheses of other cis-aminoacylproline type (Z)-alkene dipeptide mimetics.  相似文献   

9.
The proline residue of dipeptides Ser-Pro and Pro-Ser has been replaced by 7-azabicyclo[2.2.1]heptane-1-carboxylic acid (Ahc), a conformationally restricted analogue of proline that is capable of mimicking distorted amides. The conformational analysis of the new peptides in the solid state revealed that the Ahc-Ser sequence displays a type I beta-turn, which includes a distorted amide bond. In contrast, the Ser-Ahc sequence exists in a nonfolded structure.  相似文献   

10.
Synthesis and conformational studies of peptides containing the E-vinylogous prolines 1 (VPro1) and 2 (VPro2), Boc-Ala-Val-VPro1-Xaa-Leu-OMe (3, Xaa = Gly; 4, Xaa = Phe), Boc-Ala-Val-VPro2-Xaa-Leu-OMe (5, Xaa = Gly; 6, Xaa = Phe), Boc-Leu-Ile-Val-VPro1-Xaa-Leu-OMe (7, Xaa = Gly; 8, Xaa = Phe), and Boc-Leu-Ile-Val-VPro2-Xaa-Leu-OMe (9, Xaa = Gly; 10, Xaa = Phe), were carried out. It has been shown that both VPro1 and VPro2 lead to the formation of 12-membered intramolecularly hydrogen bonded structures very similar to type VI beta-turns with a cis Xaa-VPro amide bond in the major conformers in all the peptides 3-10, resulting in the nucleation of beta-hairpin type structures in these molecules in CDCl(3).  相似文献   

11.
The conformational preferences of enkephalins and the related glycoconjugates in which free or protected carbohydrate moieties were linked to the opioid peptides through an ether, ester or amide bond were investigated by circular dichroism spectroscopy in water, trifluoroethanol and water-trifluoroethanol mixtures. The analysis of the spectra revealed that the conformation of the enkephalin molecule is very sensitive to slight changes in the peptide structure around the C-terminal region. It was found that the type II beta-turn structures are populated in N-terminal tetrapeptide enkephalin fragment, while leucine-enkephalin amide feature a type I (III) beta-turn structure in solution. Incorporation of the sugar moiety into opioid peptide compound did not significantly influence the overall conformation of the peptide backbone, although minor intensity changes may reflect shifts in the population of the different turn systems. These small structural alterations can be responsible for the receptor-subtype selectivity of the various carbohydrate-modified enkephalin analogs.  相似文献   

12.
Azapeptides, peptide analogues in which the alpha-carbon of one or more of the amino acid residues is replaced with a nitrogen atom, exhibit propensity for adopting beta-turn conformations. A general protocol for the synthesis of azapeptides without racemization on solid phase has now been developed by introducing the aza-amino acid residue as an N-Boc-aza(1)-dipeptide. This approach has been validated by the synthesis of six N-Boc-aza(1)-dipeptides and their subsequent introduction into analogues of the C-terminal peptide fragment of the human calcitonin gene-related peptide (hCGRP). By performing an aza-amino acid scan of such antagonist peptides, a set of aza-hCGRP analogues was synthesized to examine the relationship between turn secondary structure and biological activity.  相似文献   

13.
The cyclic decapeptide gramicidin S (GS) was used as a model for the evaluation of four turn mimetics. For this purpose, one of the D ‐Phe‐Pro two‐residue turn motifs in the rigid cyclic β‐hairpin structure of GS was replaced with morpholine amino acids (MAA 2 – 5 ), differing in stereochemistry and length of the side‐chain. The conformational properties of the thus obtained GS analogues ( 6 – 9 ) was assessed by using NMR spectroscopy and X‐ray crystallography, and correlated with their biological properties (antimicrobial and hemolytic activity). We show that compound 8 , containing the dipeptide isostere trans‐MAA 4 , has an apparent high structural resemblance with GS and that its antibacterial activity against a panel of Gram positive and ‐negative bacterial strains is better than the derivatives 6 , 7 and 9 .  相似文献   

14.
Aza-peptides, peptide analogues in which the alpha-carbon of one or more of the amino acid residues is replaced with a nitrogen atom, exhibit a propensity for adopting beta-turn conformations. A general Fmoc-protection protocol for the stepwise solid-phase synthesis of aza-peptides has now been developed based on the activation of N'-alkyl fluoren-9-ylmethyl carbazates with phosgene for coupling the aza-amino acid residues. This method has proven effective for introducing aza-amino acid residues with aliphatic (Ala, Leu, Val, and Gly) and aromatic (Phe, Tyr, and Trp) side chains. Acid promoted loss of aromatic side chains was noted with aza-Trp and aza-Tyr residues during peptide cleavage and suppressed by temperature control in the case of the latter. In addition, aza-peptides with heteroatomic side chain residues (Lys, Orn, Arg, and Asp) were conveniently synthesized using this protocol. Partial aza-amino acid scans were performed on three biologically active peptides: the potent tetrapeptide melanocortin receptor agonist, Ac-His-d-Phe-Arg-Trp-NH2; the growth hormone secretagogue hexapeptide, GHRP-6, His-d-Trp-Ala-Trp-d-Phe-Lys-NH2; and the human calcitonin gene-related peptide (hCGRP) antagonist, FVPTDVGPFAF-NH2. This practical procedure for aza-amino acid scanning using Fmoc-based solid-phase synthesis should find general utility for probing the existence and importance of beta-turn conformations in bioactive peptides.  相似文献   

15.
Stereoisomeric cis and trans substrate analogues for Pin1 were designed and synthesized. The central phosphoSer-Pro core of the Pin1 substrate was replaced by cis and trans amide isosteres in Ac-Phe-Phe-pSer-Psi[(Z and E)CH=C]-Pro-Arg-NH(2), 1 and 2, peptidomimetics. They were synthesized on solid phase in 17% yield for the cis analogue 1, and 16% yield for the trans analogue 2. A second trans amide isostere with a C-terminal N-methylamide 3 was synthesized in 7% yield. The protease-coupled Pin1 assay showed that all three compounds inhibited the Pin1 peptidyl-prolyl isomerase (PPIase) enzymatic activity. The cis isostere 1 was 23 times more potent (K(i) = 1.74 +/- 0.08 muM) than its trans counterpart 2 (K(i) = 40 +/- 2 muM) in competitive inhibition of Pin1. These results suggest that the catalytic site of Pin1 binds cis substrates more tightly in aqueous solution. Antiproliferative activity toward the A2780 human ovarian cancer cell line by the cis and trans analogues correlates with Pin1 inhibition results.  相似文献   

16.
In order to find informations on the native structure of the Leu-Enkephalin opiate peptide, the parent peptide and its two thioamide analogs (Thio-Gly2)Leu-Enkephalin and (Thio-Gly3)Leu-Enkephalin were studied by the theoretical method PEPSEA. This comparative conformational analysis showed that the active conformation is a β turn structure centered on Gly3 and Phe4. Moreover, this study showed also that the more active analog (Thio-Gly2)Leu-Enk has a lower tendency to adopt this structure. Consequently, its high activity can only be explained by its long lifetime due to its resistance to enzymatic hydrolysis, following the substitution of the amide linkage by the thioamide one. The weakly active analog (Thio-Gly3)Leu-Enk does not adopt this structure and prefers instead a β turn structure centered on Gly2 and Gly3. This study also confirmed the importance of the distances between the Tyr and Phe residues at positions 1 and 4, and that of the terminal Tyrosine N-H group which must be free of any intramolecular hydrogen bond in order to be available in the molecular recognition process.  相似文献   

17.
A novel class of potent human gastric lipase inhibitors, bis-2-oxo amide triacylglycerol analogues, was developed. These analogues of the natural substrate of lipases were prepared starting from 1,3-diaminopropan-2-ol. They were designed to contain the 2-oxo amide functionality in place of the scissile ester bond at the sn-1 and sn-3 position, while the ester bond at the sn-2 position was either maintained or replaced by an ether bond. The derivatives synthesized were tested for their ability to form stable monomolecular films at the air/water interface by recording their surface pressure/molecular area compression isotherms. The inhibition of human pancreatic and gastric lipases by the bis-2-oxo amides was studied using the monolayer technique with mixed films of 1,2-dicaprin containing variable proportions of each inhibitor. The nature of the functional group (ester or ether), as well as the chain length, at the sn-2 position influenced the potency of the inhibition. Among the compounds tested, 2-[(2-oxohexadecanoyl)amino]-1-[[(2-oxohexadecanoyl)-amino]methyl]ethyl decanoate was the most potent inhibitor, causing a 50% decrease in HPL and HGL activities at 0.076 and 0.020 surface molar fractions, respectively.  相似文献   

18.
A second-generation library of 2-aminoimidazole-based derivatives incorporating a "reversed amide" (RA) motif in comparison to the marine natural product oroidin were synthesized and subsequently assayed for antibiofilm activity against the medically relevant Gram-negative proteobacteria P. aeruginosa and A. baumannii. Most notably, an in-depth activity profile is reported for the most active subclass of derivatives that bear linear aliphatic chains off the amide bond. Additionally, further structural modifications of the core template, such as removal of the amide bond or substitution with a triazole isostere, resulted in the discovery of analogues with antibiofilm activities that varied with respect to their inhibition and dispersal properties of P. aeruginosa and A. baumannii biofilms.  相似文献   

19.
Cyclic peptide yunnanin C isolated from the root of Stellaria yunnanensis was efficiently synthesized in which the linear peptide was prepared by Boc-SPPS and the cyclization was realized by serine/threonine ligation (STL)-mediated cyclization. In addition, nine yunnanin C analogues, including mutations of Tyr7Gly, Tyr7Val, Tyr7Pro, Tyr7Phe, Ser1Thr, Pro2Val, Gly5Pro, Phe6Ala and Ile4Ala, were prepared in the same fashion. Here, we demonstrated that STL-mediated peptide cyclization could be an effective approach to construct cyclic peptides. Except that proline at the C-terminus could retard the cyclization process, cyclization of yunnanin C analogues with various C-terminal amino acids proceeded with fast cyclization rate (<4 h) and only trace amount of dimers (<5%) at a working concentration of 5 mM.  相似文献   

20.
Kulokekahilide-2 is a 26-membered cyclic depsipeptide that exhibits potent cytotoxicity against HeLa and P388 cells with IC50 values of 3.2 and 16 ng/mL, respectively. We have achieved a total synthesis of natural kulokekahilide-2, the NMR spectra of which showed complex signals because of trans and cis conformers at the amide bond. Besides, the spectra revealed that a mixture of 26- and 24-membered cyclic depsipeptides had been produced due to intramolecular ester exchange. The isolated 24-membered compound was transformed into the 26-membered compound over a period of several days. The two isomers have been shown to be in equilibrium and to display almost the same cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号