首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To extend the analytical capabilities of immobilized metal ion affinity chromatography (IMAC) for evaluation of biologically relevant peptide-metal ion interactions, we have prepared synthetic peptides representing metal-binding protein surface domains from the human plasma metal transport protein known as histidine-rich glycoprotein (HRG). Three synthetic peptides, representing multiples of a 5-residue repeat sequence (Gly-His-His-Pro-His) from within the histidine- and proline-rich region of the C-terminal domain were prepared. Prior to immobilization, the synthetic peptides were evaluated for identity and sample homogeneity by matrix-assisted UV laser desorption time-of-flight mass spectrometry (LDTOF-MS), a method developed recently for the mass determination of high-molecular-mass biopolymers. 2,5-Dihydroxybenzoic acid was evaluated as a matrix to facilitate the laser desorption and ionization of intact peptides and was found to be ideally suited for determinations of mass within the low-mass region of interest (641.7 to 1772.8 dalton). We observed minimal chemical noise from photochemically generated peptide-matrix adduct signals, clustering, and multiply-charged peptide species. Peptides with bound sodium and potassium ions were observed; however, these signal intensities were reduced by immersion of the sample probe tip in water. Mixtures of the three different synthetic peptides were also evaluated by LDTOF-MS after their elution through a special immobilized peptide-metal ion column designed to investigate metal ion transfer. We found LDTOF-MS to be a useful new method to verify the presence of peptide-bound metal ions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The metal binding properties of peptides corresponding to metal-binding sites spanning regions that normally function as linkers in tandem arrays of metal-binding domain-containing proteins were examined. For a peptide with two His residues from one TFIIIA-like zinc finger domain, a canonical TFIIIA-like linker, and two Cys residues from an adjacent zinc domain, the dissociation constant for the 1:1 peptide to cobalt(II) was found to be 15 +/- 10 microM, compared with 60 nM for the corresponding zinc finger domains themselves. Peptides overlapping two sets of metal-binding domains from human TRAF (tumor necrosis factor receptor-associated factor) proteins were examined. In one case, the affinity of the presumed metal-binding domain and that for the linker region were comparable, while in the second case, the affinity of the linker peptide was higher than that for the corresponding presumed metal-binding domain peptide. These studies revealed that cobalt(II) affinities in the micromolar range can occur even for peptides that do not correspond to natural zinc-binding domains and that the degree of distinction between authentic metal-binding domains and the corresponding linker-spanning peptides may be modest, at least for single domain peptide models.  相似文献   

3.
The adsorption characteristics of a variety of synthetic peptide hormones and di-, tri- and tetrapeptides on Cu(II) immobilized on two commercially available high-performance chelating gels run under various experimental conditions are described. Methods for determining the concentration of immobilized Cu(II) in situ are also described. The Cu(II)-charged columns exhibit a net negative charge as judged from the significantly higher retention of some basic peptides in the absence of NaCl in the equilibration and elution buffers. At higher NaCl concentrations (2-4 M), aromatic interactions seem to be superimposed on the metal ion affinity characteristics of the peptides. The relationship between resolution of peptides and the concentration of immobilized Cu(II) ions has also been established for the Chelating Superose gel where 40 mumol Cu(II) ml-1 gel apparently gives the optimum resolution. The nature of the gel matrix also plays a role in the resolution of some peptides, the extent of which is difficult to predict. The results obtained also suggest that peptides containing aromatic and hydroxy amino acids are retarded more than those which lack them. Moreover, these same amino acids apparently strengthen the existing strong binding of peptides containing His, Trp or Cys to a Chelating Superose-Cu(II) column. Dipeptides with C-terminal His (i.e., X-His) are neither bound nor retarded on a column of Chelating Superose-Cu(II) whereas those having the structure His-X are strongly bound. Some tri- and tetrapeptides containing His were also found not to bind to the column. The underlying cause of this anomalous adsorption behaviour is discussed and is ascribed to "metal ion transfer" arising from the relatively higher affinity of such peptides towards immobilized Cu(II) ions than the chelator groups (iminodiacetate) which are covalently bound to the gel matrix.  相似文献   

4.
Metal ion affinity chromatography is widely used to purify peptides on the basis of the dissimilarities of their amino acids. However, researchers are interested in the separation differences between different metal ions in this method. In our study, four kinds of commonly used metal ions are compared by the amount of immobilized metal ion on iminodiacetic acid-Sepharose and binding amount of soybean peptide to immobilized iminodiacetic acid-Mn(+) adsorbents and evaluated by high-performance liquid chromatography (HPLC) profiles. The results show that due to the different adsorption behaviors of metal ions, the binding ability order of soybean protein peptide on the column should be Fe(3+) > Cu(2+) > Zn(2+) > Ca(2+). The HPLC profiles show that peptides adsorbed by four kinds of metal ions display similar strong hydrophobic characteristics.  相似文献   

5.
The metal-binding site of a Helicobacter pylori ATPase 439 (heli(WT)-tag) was successfully used as a new fusion peptide for immobilized metal ion affinity chromatography (IMAC). It produced higher yields than the frequently used his6-tag. Due to stronger binding of the peptide to metal ions, harsher elution conditions were, however, necessary. This undesired side-effect was overcome by modifying the heli(WT)-tag by polymerase chain reaction-directed mutagenesis. The modified tags were screened by an automated high-throughput IMAC system, leading to a heliM14-tag peptide that could be eluted under conditions similar to those of the his6-tag but at the same time produced 20% higher yields of the desired protein.  相似文献   

6.
Peptides synthesized by the solid-phase method can be efficiently purified in a single immobilized metal affinity chromatography step based on interaction with the alpha-amino group if, after coupling of each amino acid residue, unreacted amino groups are irreversibly blocked by acetylation and if no strongly metal-binding amino acids (His, Trp, Cys) are present in the sequence. A difference in basicity for alpha- and epsilon-amino functions of ca. 2 pH units is sufficiently large to allow selective binding of peptides to immobilized metal ions via the unprotonated alpha-amino group. The binding is pH-dependent: on Cu(2+)- and Ni(2+)-loaded supports most peptides are maximally retarded at pH values around 7.5 and 8.5, respectively. The decreased binding strength at lower pH values is due to protonation of the alpha-amino function, whereas the reduced affinity at higher pH is caused by metal ion transfer from the matrix to the peptide. The metal ion is captured in a multidentate chelate where, in addition to the alpha-amino group, up to three adjacent deprotonated amide nitrogens are coordinated to the metal. If the pH is raised further, additional metal ions may be bound in biuret-like structures. Immobilized Ni2+, owing to its higher selectivity and affinity, is the preferred chromatographic support if slightly basic conditions can be tolerated.  相似文献   

7.
In this investigation, several peptides containing an increasing number of histidine residues have been designed and synthesised. The peptides involved repeat units of either the pentameric EAEHA or the tetrameric HLLH sequence motifs. Adsorption isotherms for these synthetic peptides and hexahistidine (hexa-His) as a control substance were measured under batch equilibrium binding conditions with an immobilised Cu(II)-iminodiacetic acid (IDA) sorbent. The experimental data were analysed in terms of Langmuirean binding behaviour. In common with previous studies with synthetic peptides, these investigations have demonstrate that the sequential organisation of the histidine side chains in these peptides can affect the selectivity of the coordination interactions with borderline metal ions in immobilised metal ion affinity chromatographic systems. The results also confirm that peptides selected on the basis of their potential to form amphipathic secondary structures with their histidine residues presented on one face of the molecule can exhibit equivalent or higher affinity constants towards copper ions than hexa-His, although they contain fewer histidine residues. These findings are thus relevant to the selection of peptides produced inter alia by combinatorial synthetic procedures to have enhanced binding properties for Cu(II) or Ni(II) ions, or intended for use as peptide tags in the fusion handle approach for the affinity chromatographic purification of recombinant proteins.  相似文献   

8.
The structural conversion of the prion protein (PrP) from the normal cellular isoform (PrP(C)) to the posttranslationally modified form (PrP(Sc)) is thought to relate to Cu2? binding to histidine (H) residues. Traditionally, the binding of metals to PrP has been investigated by monitoring the conformational conversion using circular dichroism (CD). In this study, the metal-binding ability of 21 synthetic peptides representing regions of human PrP(C) was investigated by column switch high-performance liquid chromatography (CS-HPLC). The CS-HPLC system is composed of a metal chelate affinity column and an octadecylsilica (ODS) reversed-phase column that together enable the identification of metal-binding regardless of conformational conversion. Synthetic peptides were designed with respect to the position of H residues as well as the secondary structure of human PrP (hPrP). The ability of the octapeptide (PHGGGWGQ)-repeating region (OP-repeat) to bind metals was analyzed by CS-HPLC and supported by CD analysis, and indicated that CS-HPLC is a reliable and useful method for measuring peptide metal-binding. Peptides from the middle region of hPrP showed a high affinity for Cu2?, but binding to Zn2?, Ni2?, and Co2? was dependent on peptide length. C-Terminal peptides had a lower affinity for Cu2?, Zn2?, Ni2?, and Co2? than OP-repeat region peptides. Interestingly, hPrP193-230, which contained no H residues, also bound to Cu2?, Zn2?, Ni2?, and Co2?, indicating that this region is a novel metal-binding site in the C-terminal region of PrP(C). The CS-HPLC method described in this study is useful and convenient for assessing metal-binding affinity and characterizing metal-binding peptides or proteins.  相似文献   

9.
Some metal‐chelating peptides have antioxidant properties, with potential nutrition, health, and cosmetics applications. This study aimed to simulate their separation on immobilized metal ion affinity chromatography from their affinity constant for immobilized metal ion determined in surface plasmon resonance, both technics are based on peptide‐metal ion interactions. In our approach, first, the affinity constant of synthetic peptides was determined by surface plasmon resonance and used as input data to numerically simulate the chromatographic separation with a transport‐dispersive model based on Langmuir adsorption isotherm. Then, chromatographic separation was applied on the same peptides to determine their retention time and compare this experimental tR with the simulated tR obtained from simulation from surface plasmon resonance data. For the investigated peptides, the relative values of tR were comparable. Hence, our study demonstrated the pertinence of such numerical simulation correlating immobilized metal ion affinity chromatography and surface plasmon resonance.  相似文献   

10.
Transition metal ions are important in biological regulation partly because they can bind to and stabilize protein surface domain structures in specific conformations that are involved in key molecular recognition events. There are two C2-C2 type zinc-finger sequences within the highly conserved DNA-binding domain of the estrogen receptor protein (ERDBD). Electrospray ionization (ESI) mass spectrometry has been used to demonstrate that the metal-binding sites within the 71-residue ERDBD can bind either Zn (up to 2) or Cu (up to 4). Evidence for the induction and/or stabilization of a different conformational state with bound Cu is revealed by a characteristic shift in the ESI charge envelope. The 10+ charge state is most abundant for the fully reduced ERDBD apopeptide and the ERDBD-Zn holopeptide (bound Zn does not alter the charge envelope). In contrast, the 8+ charge state is typically the optimum charge state observed for the ERDBD-Cu holopeptide; indeed, the entire charge envelope is frame-shifted to lower charge states with bound Cu. Interpretation of the altered charge states is simplified because (i) a single type of metal-binding ligand (sulfur) is involved in the case of both Zn and Cu binding, and (ii) the two different metal cations are both divalent. Thus, it is likely that the dissimilar charge envelopes represent different peptide conformers, each of which is stabilized by a different type of bound metal ion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Metallochaperones are soluble proteins involved in metal transport and regulation in vivo. Copper metallochaperones belong to a structural family of metal binding domains displaying a ferredoxin-like fold (betaalphabetabetaalphabeta) and a consensus metal-binding motif MXCXXC. The metal-binding selectivities for this class of proteins are poorly documented so far. The present study focuses on the measurement of the selectivity of the copper metallochaperone CopZ from Enterococcus hirae for different metal ions using an experimental approach based on electrospray ionization mass spectrometry (ESI-MS). All the metal cations tested, i.e. Cu(I), Cu(II), Hg(II), Cd(II) and Co(II), form specific metal complexes with CopZ. The study of a chemically modified CopZ as well as variants of CopZ in the active site demonstrated that the complexes observed by ESI-MS, i.e. in the gas phase, corresponded to the complexes previously observed by other analytical methods in solution. Competition experiments allowed the classification of the metal ions by increasing affinities for CopZ as follows: Co < Cd < Hg < Cu. A dissociation constant in the range of 20 microM was determined for cobalt. The affinity of CopZ for the other metals tested was found to be higher, with dissociation constants smaller than micromolar.  相似文献   

12.
The question whether molecular dynamics (MD) simulations can yield reliable structural and dynamical properties of metalloproteins depend on the accuracy of the force field, i.e., the potential energy function (PEF) and associated parameters modeling the interactions of the metal ion of interest with water and protein ligands. Previously, we had developed a CTPOL PEF for protein simulations of Zn(2+) bound to Cys(-) and/or His(0) that includes charge transfer and local polarization effects as well as metal van der Waals parameters that reproduce the structural and thermodynamical properties of 22 dications. Here, we evaluate if the CTPOL PEF and the new metal parameters (referred to as the CTPOLa force field) can be applied to proteins containing polynuclear metal-binding sites and heavy toxic metal ions, using the CdZn(2)-Cys(9) beta-domain of rat liver metallothionein-2 and the Hg(2+)-bound 18-residue peptide from MerP as test systems. Using the CTPOLa force field, simulations of the beta-domain of rat liver metallothionein-2 totaling 19 ns could preserve the experimentally observed CdZn(2)-Cys(9) complex geometry and overall protein structure, whereas simulations neglecting charge transfer and local polarization effects could not. However, the CTPOLa force field cannot reproduce the experimentally observed linear bicoordination of Hg(2+) in the MerP peptide without adding an angular restraint to the CTPOL PEF to correct the angle distribution about Hg(2+). Thus, the force fields presented herein for the group IIB metal ions can be applied to simulation studies of proteins containing polynuclear metal-binding sites and heavy metal ions in aqueous solution. PEF neglecting charge transfer and local polarization effects in conjunction with vdW parameters adjusted to reproduce the structural and thermodynamical properties of only the metal ion in question could not yield an accurate representation of the metal-binding site and overall protein structure.  相似文献   

13.
Potentiometric and spectroscopic data have shown that octarepeat dimer and tetramer are much more effective ligands for Cu(II) ions than simple octapeptide. Thus, the whole N-terminal segment of prion protein due to cooperative effects, could be more effective in binding of Cu(II) than simple peptides containing a His residue. The gain of the Cu(II) binding by longer octarepeat peptides derives from the involvement of up to four imidazoles in the coordination of the first Cu(II) ion. This type of binding increases the order of the peptide structure, which allows successive metal ions for easier coordination.  相似文献   

14.
Electrospray ionization mass spectrometry (ESI-MS) was used to investigate metal ion interactions with salivary peptides histatin 3 (H3) and histatin 5 (H5). Conformational changes of these peptides in the presence of metal ions were studied using circular dichroism spectroscopy. H3 and H5 formed high affinity complexes with Cu(2+) and Ni(2+) and, to a lesser extent, with Zn(2+). Both peptides show the potential for multiple binding sites for Cu(2+) and Ni(2+) and only a single strong binding site for Zn(2+). The binding of a third Cu(2+) ion to H3 seems to enable the binding of a fourth ion to H3. The binding of a second and third Ni(2+) ion to H5 has a similar effect in enabling the binding of a fourth ion. None of the metal ions examined stabilized a regular secondary structure for either peptide. Subtle changes in overall conformation are seen with the addition of Cu(2+) to both H3 and H5.  相似文献   

15.
BACKGROUND: Specific interactions of metal ions with proteins are central to all life processes. The varied functions enabled by this cooperation are a consequence of strict control of the binding-site environment, particularly the number, type and geometry of metal-coordinating sidechains. Attempts to mimic these characteristics in the de novo design of metal-binding sites have thus far concentrated primarily on metal recruitment and not on affecting site function through systematic fine-tuning of the metal environment. RESULTS: A designed tetrahedral Zn(II)-binding site in a variant of the B1 domain of IgG-binding protein G has been expanded by introducing 'secondary ligands'. These interactions were engineered to stabilize the positions of the metal-coordinating histidine residues while retaining the desired coordination geometry. Each mutation increased the protein's affinity for metal, and combining two secondary ligands demonstrated that these enhancements are additive. These results mimic the effects of altering similar interactions observed in the native Zn(II)-binding site of carbonic anhydrase. In the B1 system, this enhanced affinity for metal is observed despite a substantial decrease in protein secondary structure. CONCLUSIONS: The intended effects of secondary ligand addition on metal affinity were observed in each mutant and demonstrated to be additive. Addition of metal also stabilized the protein's structure, partially offsetting the destabilizing effect of the mutations. These results represent a successful first attempt at designing an extended metal-binding site environment and illustrate the importance of including secondary interactions in the design of metal-binding sites.  相似文献   

16.
Metalloproteins are an attractive target for de novo design. Usually, natural proteins incorporate two or more (hetero- or homo-) metal ions into their frameworks to perform their functions, but the design of multiple metal-binding sites is usually difficult to achieve. Here, we undertook the de novo engineering of heterometal-binding sites, Ni(II) and Cu(II), into a designed coiled coil structure based on an isoleucine zipper (IZ) peptide. Previously, we described two peptides, IZ-3adH and IZ-3aH. The former has two His residues and forms a triple-stranded coiled coil after binding Ni(II), Zn(II), or Cu(II). The latter has one His residue, which allowed binding with Cu(II) and Zn(II), but not with Ni(II). On the basis of these properties, we newly designed IZ(5)-2a3adH as a heterometal-binding peptide. This peptide can bind Cu(II) and Ni(II) simultaneously in the hydrophobic core of the triple-stranded coiled coil. The first metal ion binding induced the folding of the peptide into the triple-stranded coiled coil, thereby promoting the second metal ion binding. This is the first example of a peptide that can bind two different metal ions. This construction should provide valuable insights for the de novo design of metalloproteins.  相似文献   

17.
We have evaluated immobilized Cu(II) ions as a potential site-directed molecular probe to monitor ligand-induced alterations in protein surface structures. Metal ion-induced alterations in the surface structures of different lactoferrins (human and porcine), transferrins (human and rabbit), and ovotransferrin (chicken) were examined. Although these 78,000-dalton glycoproteins are related gene products with similar overall structure and function, they differ greatly in the number and distribution of surface-exposed electron-donor groups thought to interact with Cu(II) ions. Each of these proteins interacted with immobilized Cu(II) ions through sites which are distinct from the two specific high affinity metal binding sites identified for iron. In both the presence and absence of bound iron, transferrins interacted more strongly with the immobilized Cu(II) ions than did lactoferrins; ovotransferrin interacted only weakly. Although iron binding increased the affinities of lactoferrins for immobilized Cu(II), iron binding decreased the affinities of transferrins and ovotransferrin for immobilized Cu(II) ions. Iron-saturated and iron-free lactoferrins were resolved by pH gradient elution, but only in the presence of 3 M urea; they were not resolved by imidazole affinity elution. Conversely, the iron-saturated and iron-free forms of transferrin were only separated by imidazole affinity elution. Urea did not influence the resolution of apo and holo ovotransferrins by imidazole. The differential effects of urea and imidazole suggest the participation of different types of surface electron-donor groups. The progressive site-specific modification of surface-exposed histidyl residues by carboxyethylation revealed several lactoferrin forms of intermediate affinity for immobilized iminodiacetate-Cu(II) ions. In summary, independent of species, the affinity for immobilized Cu(II) ions increased as follows: iron-saturated ovotransferrin less than metal-free ovotransferrin less than apolactoferrin less than hololactoferrin much less than diferric or holotransferrin less than monoferric transferrin less than apotransferrin. We have demonstrated the use of immobilized Cu(II) ions to distinguish and to monitor ligand-induced alterations in protein surface structure. The results are discussed in relation to protein surface-exposed areas of electron-donor groups.  相似文献   

18.
Several commercial immobilized metal affinity chromatography sorbents were evaluated in this study for the analysis of two small peptide fragments of the amyloid β‐protein (Aβ) (Aβ(1–15) and Aβ(10–20) peptides) by on‐line immobilized metal affinity SPE‐CE (IMA‐SPE‐CE). The performance of a nickel metal ion (Ni(II)) sorbent based on nitrilotriacetic acid as a chelating agent was significantly better than two copper metal ion (Cu(II)) sorbents based on iminodiacetic acid. A BGE of 25 mM phosphate (pH 7.4) and an eluent of 50 mM imidazole (in BGE) yielded a 25‐fold and 5‐fold decrease in the LODs by IMA‐SPE‐CE‐UV for Aβ(1–15) and Aβ(10–20) peptides (0.1 and 0.5 μg/mL, respectively) with regard to CE‐UV (2.5 μg/mL for both peptides). The phosphate BGE was also used in IMA‐SPE‐CE‐MS, but the eluent needed to be substituted by a 0.5% HAc v/v solution. Under optimum preconcentration and detection conditions, reproducibility of peak areas and migration times was acceptable (23.2 and 12.0%RSD, respectively). The method was more sensitive for Aβ(10–20) peptide, which could be detected until 0.25 μg/mL. Linearity for Aβ(10–20) peptide was good in a narrow concentration range (0.25–2.5 μg/mL, R2 = 0.93). Lastly, the potential of the optimized Ni(II)‐IMA‐SPE‐CE‐MS method for the analysis of amyloid peptides in biological fluids was evaluated by analyzing spiked plasma and serum samples.  相似文献   

19.
The aggregation of alpha-synuclein (AS) is characteristic of Parkinson's disease and other neurodegenerative synucleinopathies. Interactions with metal ions affect dramatically the kinetics of fibrillation of AS in vitro and are proposed to play a potential role in vivo. We recently showed that Cu(II) binds at the N-terminus of AS with high affinity (K(d) approximately 0.1 microM) and accelerates its fibrillation. In this work we investigated the binding features of the divalent metal ions Fe(II), Mn(II), Co(II), and Ni(II), and their effects on AS aggregation. By exploiting the different paramagnetic properties of these metal ions, NMR spectroscopy provides detailed information about the protein-metal interactions at the atomic level. The divalent metal ions bind preferentially and with low affinity (millimolar) to the C-terminus of AS, the primary binding site being the (119)DPDNEA(124) motif, in which Asp121 acts as the main anchoring residue. Combined with backbone residual dipolar coupling measurements, these results suggest that metal binding is not driven exclusively by electrostatic interactions but is mostly determined by the residual structure of the C-terminus of AS. A comparative analysis with Cu(II) revealed a hierarchal effect of AS-metal(II) interactions on AS aggregation kinetics, dictated by structural factors corresponding to different protein domains. These findings reveal a strong link between the specificity of AS-metal(II) interactions and the enhancement of aggregation of AS in vitro. The elucidation of the structural basis of AS metal binding specificity is then required to elucidate the mechanism and clarify the role of metal-protein interactions in the etiology of Parkinson's disease.  相似文献   

20.
Transition metal-polyalanine complexes were analyzed in a high-capacity quadrupole ion trap after electrospray ionization. Polyalanines have no polar amino acid side chains to coordinate metal ions, thus allowing the effects metal ion interaction with the peptide backbone to be explored. Positive mode mass spectra produced from peptides mixed with salts of the first row transition metals Cr(III), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), and Cu(II) yield singly and doubly charged metallated ions. These precursor ions undergo collision-induced dissociation (CID) to give almost exclusively metallated N-terminal product ions whose types and relative abundances depend on the identity of the transition metal. For example, Cr(III)-cationized peptides yield CID spectra that are complex and have several neutral losses, whereas Fe(III)-cationized peptides dissociate to give intense non-metallated products. The addition of Cu(II) shows the most promise for sequencing. Spectra obtained from the CID of singly and doubly charged Cu-heptaalanine ions, [M + Cu - H](+) and [M + Cu](2+) , are complimentary and together provide cleavage at every residue and no neutral losses. (This contrasts with [M + H](+) of heptaalanine, where CID does not provide backbone ions to sequence the first three residues.) Transition metal cationization produces abundant metallated a-ions by CID, unlike protonated peptides that produce primarily b- and y-ions. The prominence of metallated a-ions is interesting because they do not always form from b-ions. Tandem mass spectrometry on metallated (Met = metal) a- and b-ions indicate that [b(n) + Met - H](2+) lose CO to form [a(n) + Met - H](2+), mimicking protonated structures. In contrast, [a(n) + Met - H](2+) eliminate an amino acid residue to form [a(n-1) + Met - H](2+), which may be useful in sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号