首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silica monoliths coated with functionalised latex particles have been prepared for use in monolithic ion-exchange capillary electrochromatography (IE-CEC) for the separation of inorganic anions. The ion-exchange monoliths were prepared using 70 nm quaternary ammonium, anion-exchange latex particles, which were bound electrostatically to a monolithic silica skeleton synthesised in a fused silica capillary. The resulting stationary phases were characterised in terms of their chromatographic performance and capacity. The capacity of a 50 microm diameter 25 cm latex-coated silica monolith was found to be 0.342 nanoequivalents and 80,000 theoretical plates per column were typically achieved for weakly retained anions, with lower efficiency being observed for analytes exhibiting strong ion-exchange interaction with the stationary phase. The electroosmotic flow (EOF) was reversed after the latex-coating was applied (-25.96 m2 V(-1) s(-1), relative standard deviation (RSD) 2.8%) and resulted in anions being separated in the co-EOF mode. Ion-exchange interactions between the analytes and the stationary phase were manipulated by varying the ion-exchange selectivity coefficient and the concentration of a competing ion (phosphate or perchlorate) present in the electrolyte. Large concentrations of competing ion (greater than 1M phosphate or 200 mM perchlorate) were required to completely suppress ion-exchange interactions, which highlighted the significant retention effects that could be achieved using monolithic columns compared to open tubular columns, without the problems associated with particle-packed columns. The latex-coated silica monoliths were easily produced in bulk quantities and performed reproducibly in acidic electrolytes. The high permeability and beneficial phase ratio makes these columns ideal for micro-LC and preconcentration applications.  相似文献   

2.
Two in-line preconcentration capillary zone electrophoresis (CZE) methods (field amplified sample injection (FASI) and stacking with sample matrix removal (LVSS)) have been evaluated for the analysis of acrylamide (AA) in foodstuffs. To allow the determination of AA by CZE, it was derivatized using 2-mercaptobenzoic acid. For FASI, the optimum conditions were water at pH > or = 10 adjusted with NH3 as sample solvent, 35 s hydrodynamic injection (0.5 psi) of a water plug, 35 s of electrokinetic injection (-10 kV) of the sample, and 6s hydrodynamic injection (0.5 psi) of another water plug to prevent AA removal by EOF. In stacking with sample matrix removal, the reversal time was found to be around 3.3 min. A 40 mM phosphate buffer (pH 8.5) was used as carrier electrolyte for CZE separation in both cases. For both FASI and LVSS methods, linear calibration curves over the range studied (10-1000 microg L(-1) and 25-1000 microg L(-1), respectively), limit of detection (LOD) on standards (1 microg L(-1) for FASI and 7 microg L(-1) for LVSS), limit of detection on samples (3 ng g(-1) for FASI and 20 ng g(-1) for LVSS) and both run-to-run (up to 14% for concentration and 0.8% for time values) and day-to-day precisions (up to 16% and 5% for concentration and time values, respectively) were established. Due to the lower detection limits obtained with the FASI-CZE this method was applied to the analysis of AA in different foodstuffs such as biscuits, cereals, crisp bread, snacks and coffee, and the results were compared with those obtained by LC-MS/MS.  相似文献   

3.
This study describes a comparison of different modes of open-tubular electrochromatography (OTCEC) in bare and etched capillaries. To carry out the investigation, the separation of impurities of two synthetic peptides and the separation of a mixture of five heterocyclic aromatic amines were studied. Three different types of stationary phase were evaluated: (i) fluorosurfactants (anionic and zwitterionic) adsorbed in the inner wall of the capillary (electrochromatography with dynamically modified stationary phases (DMS)CEC); (ii) physically adsorbed polymers (DMA-SO(3-) and DMA-N(+)(CH(3))(3)) and (iii) chemically modified capillaries (C(18), cholesteryl 10-undecanoate and diol). The results confirm that electrochromatography can be a viable alternative to capillary electrophoresis (CE) and liquid chromatography, more established separation techniques. It is possible to differentiate some minor species for the synthetic peptides that cannot be resolved by CE or high-performance liquid chromatography (HPLC). Moreover the separation of the amine mixture depends strongly on the stationary phase used.  相似文献   

4.
Open-tubular capillaries have been joined together for use in on-column ion-exchange preconcentration of anions by capillary electrochromatography (CEC) with elution by a transient isotachophoretic gradient. This involved the coupling of a preconcentration capillary and a separation capillary using a PTFE sleeve. Such coupling allowed precise lengths of differently coated capillaries to be joined in-line to form a single multi-mode column. The different segments could be tailored to optimize a separation by either altering the length of each segment to precisely manipulate the amount of stationary phase present or by changing the internal diameter of each segment to alter the phase ratio in the chromatographic column without affecting the path length for UV detection. In this work, a segmented in-line capillary was used in conjunction with a fluoride-octanesulfonate discontinuous electrolyte system to increase the number of anions that could be preconcentrated and separated. Quaternary ammonium functionalised latex particles were used for creating the preconcentration segment and the separation segment was coated with poly(diallyldimethylammonium chloride). This allowed the detection of trace anions in drinking water and in situ sampling of river water for the analysis of trace inorganic anions. The repeatability of producing the quaternary ammonium functionalized latex-coated segments was assessed and the effect of segmentation on peak efficiency was investigated.  相似文献   

5.
Quaternary ammonium functionalised polymeric latex particles were coated onto the wall of a fused-silica capillary or onto a methacrylate monolithic bed synthesised inside the capillary in order to create ion-exchange stationary phases of varying ion-exchange capacity. These capillaries were coupled in-line to a separation capillary and used for the solid-phase extraction (SPE), preconcentration and subsequent separation of organic anions by capillary electrophoresis. A transient isotachophoretic gradient was used for the elution of bound analytes from the SPE phase using two modes of separation. The first comprised a low capacity SPE column combined with a fluoride/octanesulfonate discontinuous electrolyte system in which peak compression occurred at the isotachophoretic gradient front. The compressed anions were separated electrophoretically after elution from the SPE preconcentration phase and resolution was achieved by altering the pH of the electrolyte in which the separation was performed. In the second approach, a latex-coated monolithic SPE preconcentration stationary phase was used in combination with a fluoride/perchlorate electrolyte system, which allowed capillary electrochromatographic separation to occur behind the isotachophoretic gradient front. This method permitted the removal of weakly bound anions from the SPE phase, thereby establishing the possibility of sample clean-up. The effect of the nature of the strong electrolyte forming the isotachophoretic gradient on the separation and also on the preconcentration step was investigated. Capillary electrochromatography of inorganic and organic species performed on the latex-coated monolithic methacrylate column highlighted the presence of mixed-mode interactions resulting from the incomplete coverage of latex particles onto the monolithic surface. Analyte preconcentration prior to separation resulted in compression of the analyte zone by a factor of 300. Improvement in the limit of detection of up to 10400 times could be achieved when performing the preconcentration step and the presented methods had limits of detection (S/N=3) ranging between 1.5 and 12 nM for the organic anions studied.  相似文献   

6.
A background electrolyte (BGE) containing a 100 mM concentration of an alkylammonium cation with ethyl, propyl or butyl groups provides an excellent medium for separation of anions by capillary electrophoresis (CE). Two major effects were noted. Use of one of a series of alkylammonium cations in the BGE at a selected pH provides a simple and effective way to vary and control electroosmotic flow (EOF) over a broad range. It is believed that the alkylammonium cations are coated onto the capillary surface through a reversible dynamic equilibrium. Secondly, alkylammonium cations modify the electrophoretic migration of sample anions and the electroosmotic migration of neutral organic analytes by association interaction. This selective interaction results in improved anion separations and permits the simultaneous separation of neutral analytes. The degree of association interaction varies with the bulk and hydrophobicity of the alkylammonium cations. Incorporation of an aliphatic amine salt of moderate molecular weight in the running electrolyte provides a valuable new way to vary the migration times of sample anions and to optimize their resolution. The interactions between alkylammonium cations and sample anions or neutral organics appear to take place entirely within the liquid phase and do not require a polymeric or micellar pseudo phase.  相似文献   

7.
Several strategies, namely, large volume sample stacking (LVSS), field‐amplified sample injection (FASI), sweeping, and in‐line SPE‐CE, were investigated for the simultaneous separation and preconcentration of a group of parabens. A BGE consisting of 20 mM sodium dihydrogenphosphate (pH 2.28) and 150 mM SDS with 15% ACN was used for the separation and preconcentration of the compounds by sweeping, and a BGE consisting of 30 mM sodium borate (pH 9.5) was used for the separation and preconcentration of the compounds by LVSS, FASI, and in‐line SPE‐CE. Several factors affecting the preconcentration process were investigated in order to obtain the maximum enhancement of sensitivity. The LODs obtained for parabens were in the range of 18–27, 3–4, 2, and 0.01–0.02 ng/mL, and the sensitivity evaluated in terms of LODs was improved up to 29‐, 77‐, 120‐, and 18 400‐fold for sweeping, LVSS, FASI, and in‐line SPE‐CE, respectively. These preconcentration techniques showed potential as good strategies for focusing parabens. The four methods were validated with standard samples to show the potential of these techniques for future applications in real samples, such as biological and environmental samples.  相似文献   

8.
A new capillary electrophoretic approach for simultaneous separation of fast anions and cations is demonstrated. Indirect UV detection at 214 nm in conjunction with electromigration sampling from both ends of the capillary was developed. Two electrolyte systems based on imidazole-nitrate and copper(II)-ethylenediamine-nitrate were investigated for the simultaneous separation of chloride, sulphate, hydrocarbonate, potassium, ammonium, calcium, sodium and magnesium ions. Experimental parameters that were evaluated included a nature of UV chromophore, pH of electrolyte, a nature of complexing agent. The method permits the excellent separation of three anions and five cations in only 4 min using electrolyte system containing 2.5 mmol l−1 Cu(NO3)2, 5 mmol l−1 ethylenediamine and 1 mmol l−1 fumaric acid at pH 8.5 adjusted with tetraethylammonium hydroxide.  相似文献   

9.
This paper shows the potentiality of capillary electrophoresis (CE) coupled to mass spectrometry (MS) for the analysis of heterocyclic aromatic amines obtaining good results in terms of sensitivity and precision. These compounds have a special interest since they can be carcinogenic for humans. The optimization of a CE-MS method was performed and the best conditions were obtained using a 16 mM formic acid/ammonium formate solution at pH 4.5 with 60% methanol as running electrolyte. For CE-MS coupling, a sheath liquid methanol/20 mM formic acid (75/25) solution at a flow rate of 3 microL/min and hydrodynamic injection of methanol mixtures for 10 s were used. Detection limits ranging from 18 ng/g to 360 ng/g and precisions up to 1.4% and 12% for migration time and concentration, respectively, were obtained. In order to improve sensitivity, field-amplified sample injection was applied as an in-line preconcentration method. Methanol/5 mM formic acid (50/50) as a sample solvent, 3 s hydrodynamic injection (0.5 psi) of a methanol plug, and 25 s of electrokinetic injection (10 kV) of the sample were found to be the optimum conditions. Detection limits up to 25 times lower and similar precisions than those reported for hydrodynamic injection were obtained.  相似文献   

10.
A monolithic molecularly imprinted polymer with specific recognition ability for 4-hydroxybenzoic acid (4-HBA) was prepared by in situ photopolymerization, using methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linking agent, toluene and isooctane as porogenic solvents and Irgacure 1800 as an initiator. Baseline separation of isomers of hydroxybenzoic acid was achieved in less than 8 min on this monolithic column using 4-HBA as template, but not on the blank polymer. Furthermore, some neutral compounds could also be baseline-separated on the imprinted polymer column in the mode of pressure-driven capillary electrochromatography.  相似文献   

11.
Polyacrylamide-filled gel columns are used to separate oligonucleotide samples. For homopolymeric standard samples, plots of migration time versus molecular size are presented over a range of 30-160 bases. With 2.5-4% T and 3.3% C gels, good resolution over the examined mass range, with peak width at half height of 3 to 6 s, is obtained by applying electrical fields of 200-400 V/cm. The separation of heteropolymeric nucleotides by slab gel electrophoresis under routine conditions was compared with capillary gel electrophoresis. Using the same column and the same separation conditions, the plot of migration time versus base number is linear with an identical slope for three oligonucleotide samples which were examined, allowing a calibration of a gel-filled capillary for molecular mass determination.  相似文献   

12.
Single drop microextraction (SDME) can be in-line coupled with capillary electrophoresis by attaching a drop to the tip of a capillary. With a 2-layer drop comprised of an aqueous basic acceptor phase covered with a thin organic layer, acidic analytes in an aqueous acidic donor phase can be extracted into the organic layer and then back-extracted into the acceptor phase. However, preconcentration of amino acids and peptides by SDME is difficult since their zwitterionic properties prevent them from being partitioned in the middle organic phase. When amino acids were derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), amino acids without a charged side chain were converted to carboxylic acids. In the acidic donor phase, those NBD-amino acids were predominantly neutral and they were successfully concentrated into the basic acceptor phase. In the meantime, amino acids with a charged side chain after NBD-F derivatization were not concentrated via SDME. With this selective SDME, we were able to extract acidic and neutral amino acids obtaining several hundred-fold enrichments within 5 min at 25 °C, while leaving basic amino acids—Arg, Lys, and His—in the acidic donor phase. Furthermore, detection sensitivity was enhanced by employing laser-induced fluorescence detection. We then applied this technique to the selective concentration of peptides.  相似文献   

13.
J Sudor  F Foret  P Bocek 《Electrophoresis》1991,12(12):1056-1058
The separation of oligonucleotides by capillary zone electrophoresis (CZE) was studied in fused silica separation capillaries filled by linear (noncrosslinked) polyacrylamide (PAA) solutions, introduced into the capillary from the stock by pressure after each analysis. The time-consuming in-capillary polymerization step could thus be avoided, and fast and reproducible repetition of the analyses was assured. The PAA concentrations varied within the range of 3-10% and both the reproducibility of the analyses and the stability of the solution in the capillary, with and without a chemically treated inner wall, were tested. Ferguson plots were used to assess the size selectivity of the separation.  相似文献   

14.
In capillary electrochromatography (CEC), magnetic particles (MPs) were packed in a fused silica capillary by using the magnetic field to be retained without frits. For a chiral CEC separation, avidin was immobilized onto the surface of the MPs (AVI-MPs) as a stationary phase by using the physical adsorption technique. The injected AVI-MPs into the capillary were stably captured with the magnet (surface magnetic flux density, 250 mT) under the separation voltage of 10 kV (190 V/cm). By employing the fritless AVI-MPs packed capillary, the chiral separation of ketoprofen was successfully attained with the packing length of only 5 cm. Effects of the modification condition of avidin, pH of background solution, and the packing length on the enantioseparation were also investigated. Under the optimal condition, furthermore, the repeatability for the retention time of ketoprofen was better than 1.5% in the relative standard deviation and the capillary-to-capillary reproducibility was also acceptable in the prepared fritless capillaries.  相似文献   

15.
Shou CQ  Zhou CL  Zhao CB  Zhang ZL  Li GB  Chen LR 《Talanta》2004,63(4):887-891
A series of hyperbranched poly(amine-ester)s based on 1,1,1-trimethylolpropane, methyl acrylate and diethanolamine were synthesized and coated on the inner surface of the fused-silica capillaries by physical adsorption. The most effective coating was the seventh generation hyperbranched poly(amine-ester) coating, which reduced the electroosmotic flow (EOF) greatly and suppressed protein adsorption effectively. The high separation efficiencies for basic proteins were obtained and the coating had a good stability.  相似文献   

16.
新型共聚物涂层毛细管电泳柱及其分离蛋白质的研究   总被引:2,自引:0,他引:2  
 研究新型共聚物——ZB系列表面键合剂在毛细管电泳中的应用。采用物理吸附的方法制备了ZB-004,ZB-014,ZB-016等3种涂层毛细管柱,在pH3~5范围内,3种涂层均能有效地降低管壁对蛋白质的吸附作用和电渗流,其中亲水性较弱的ZB-004涂层的分离性能最好。在pH<5时,涂层具有较高的稳定性和良好的分析重复性,但在更高的pH值条件下,仍然存在着峰形畸变和电渗流迅速增加的现象。  相似文献   

17.
A method has been proposed for the determination of 17 herbicides and their metabolites in natural waters by capillary zone electrophoresis with UV detection at 190 nm. Dispersive liquid-liquid microextraction with trichloromethane has been used for pesticide recovery from water. The high sensitivity of determination has been provided by additional intracappilary preconcentration: the limits of pesticide detection in water involving off- and on-line preconcentration are 0.5–3.0 μg/L. The analysis takes 1–1.5 h; the relative standard deviation of the analysis results does not exceed 5%.  相似文献   

18.
A capillary electrophoresis method is proposed to analyze the four most well-known growth hormone–releasing hormone (GHRH) analogs that are misused by athletes. Dimethyl-β-cyclodextrin used as a chiral selector allowed, for the first time, the separation of those basic peptide analogs, including enantiopeptides (sermorelin and CJC-1293) that differ by the chirality of only one amino acid. To increase the method sensitivity, electrokinetic preconcentration methods have been investigated. The large volume sample stacking with polarity switching (PS-LVSS) method with an injected sample volume corresponding to 80% of the capillary one was found superior to the sweeping in terms of signal enhancement factor (SEF). Acid and organic solvent addition to the sample (0.1 mM phosphoric acid with 30% methanol) led to a twofold signal improvement, when compared to water as a matrix. We increased capillary dimensions to provide a signal enhancement through the injection of a larger sample volume. Finally, using a combination of the optimized PS-LVSS preconcentration with the chiral capillary zone electrophoresis (CZE), the GHRH analogs were separated and limits of detection between 75 and 200 ng/mL were reached. This method was successfully applied to urine after a desalting step. An optimized C18 SPE was used for that purpose in order to provide low sample conductivity (<130 µS/cm) and preserve the efficiency of LVSS preconcentration. SEF of 640 was obtained with desalted urine spiked with sermorelin by comparison to the CZE (without preconcentration) method.  相似文献   

19.
A monolithic column was prepared using l-phenylalanine as template and a covalent approach through the formation of Schiff base with o-phthalaldehyde (OPA). OPA, allylmercaptan, l-phenylalanine, and triethylamine were stirred at first, then methacrylic acid, 2-vinylpyridine, ethyleneglycol dimethacrylate, α,α-azobisisobutyronitrile, and 1-propanol were added to the reaction mixture. The resulting material was introduced into a capillary column. Following thermal polymerization, the template was then extracted with a mixture of HCl and methanol. The column was employed for the capillary electrochromatographic separation of oligopeptides. A capillary column of 75 (50) cm × 75 μm ID with a mobile phase of phosphate buffer (pH 7.0, 40 mM)/methanol (5%, v/v), an applied voltage of +15 kV, and detection at 214 nm, could baseline separate angiotensin I, angiotensin II, [Sar1, Thr8] angiotensin, oxytocin, vasopressin, tocinoic acid, β-casomorphin bovine, β-casomorphin human, and FMRF amide within 20 min. The separation behavior of the templated polymer was also compared with that of the non-templated polymer. As a result, it can be concluded that the electrochromatographic separation of this set of peptides was mediated by a combination of electrophoretic migration and chromatographic retention involving hydrophobic, hydrogen bonding, electrostatic as well as the Schiff base formation with OPA in the cavity of the templated polymer.  相似文献   

20.
In this work, a novel polymer-based monolithic column was prepared using an o-phthalaldehyde-l-phenylalanine Schiff base complex as the reactive center and a mixture of methanol and n-propanol as the porogen. The monolithic column was employed for the separation of a metal ion mixture including Pb(II), Mn(II), Cu(II), Ni(II), Cr(III), Fe(III) and Cr(VI). Tetrabutylammonium bromide (TBAB) was used as a mobile phase additive to enhance the separation efficiency of metal ions by EDTA precomplexation. Using a phosphate buffer (20 mM, pH 3.0), TBAB (10 mM), MeOH (15%, v/v), an applied voltage of −15 kV, and detection at 220 nm, the metal ion mixture was satisfactorily resolved. The average theoretical plate number was 17,900 plates/m. The separation was also carried out in the absence of TBAB, leading to dissimilar elution order and shorter retention time. The separation behavior of the monolithic column was also compared with that of the blank polymer. The unique properties of the monolithic column might be mediated by a combination of electrophoretic behavior and chromatographic retention involving hydrophobic and hydrophilic interactions, as well as ligand exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号