共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhong W Kuntz DA Ember B Singh H Moremen KW Rose DR Boons GJ 《Journal of the American Chemical Society》2008,130(28):8975-8983
Inhibition of Golgi alpha-mannosidase II (GMII), which acts late in the N-glycan processing pathway, provides a route to blocking cancer-induced changes in cell surface oligosaccharide structures. To probe the substrate requirements of GMII, oligosaccharides were synthesized that contained an alpha(1,3)- or alpha(1,6)-linked 1-thiomannoside. Surprisingly, these oligosaccharides were not observed in X-ray crystal structures of native Drosophila GMII (dGMII). However, a mutant enzyme in which the catalytic nucleophilic aspartate was changed to alanine (D204A) allowed visualization of soaked oligosaccharides and led to the identification of the binding site for the alpha(1,3)-linked mannoside of the natural substrate. These studies also indicate that the conformational change of the bound mannoside to a high-energy B 2,5 conformation is facilitated by steric hindrance from, and the formation of strong hydrogen bonds to, Asp204. The observation that 1-thio-linked mannosides are not well tolerated by the catalytic site of dGMII led to the synthesis of a pentasaccharide containing the alpha(1,6)-linked Man of the natural substrate and the beta(1,2)-linked GlcNAc moiety proposed to be accommodated by the extended binding site of the enzyme. A cocrystal structure of this compound with the D204A enzyme revealed the molecular interactions with the beta(1,2)-linked GlcNAc. The structure is consistent with the approximately 80-fold preference of dGMII for the cleavage of substrates containing a nonreducing beta(1,2)-linked GlcNAc. By contrast, the lysosomal mannosidase lacks an equivalent GlcNAc binding site and kinetic analysis indicates oligomannoside substrates without non-reducing-terminal GlcNAc modifications are preferred, suggesting that selective inhibitors for GMII could exploit the additional binding specificity of the GlcNAc binding site. 相似文献
2.
Liénard BM Garau G Horsfall L Karsisiotis AI Damblon C Lassaux P Papamicael C Roberts GC Galleni M Dideberg O Frère JM Schofield CJ 《Organic & biomolecular chemistry》2008,6(13):2282-2294
The development of broad-spectrum metallo-beta-lactamase (MBL) inhibitors is challenging due to structural diversity and differences in metal utilisation by these enzymes. Analysis of structural data, followed by non-denturing mass spectrometric analyses, identified thiols proposed to inhibit representative MBLs from all three sub-classes: B1, B2 and B3. Solution analyses led to the identification of broad spectrum inhibitors, including potent inhibitors of the CphA MBL (Aeromonas hydrophila). Structural studies revealed that, as observed for other B1 and B3 MBLs, inhibition of the L1 MBL thiols involves metal chelation. Evidence is reported that this is not the case for inhibition of the CphA enzyme by some thiols; the crystal structure of the CphA-Zn-inhibitor complex reveals a binding mode in which the thiol does not interact with the zinc. The structural data enabled the design and the production of further more potent inhibitors. Overall the results suggest that the development of reasonably broad-spectrum MBL inhibitors should be possible. 相似文献
3.
Engel CK Pirard B Schimanski S Kirsch R Habermann J Klingler O Schlotte V Weithmann KU Wendt KU 《Chemistry & biology》2005,12(2):181-189
Inhibitors for matrix metalloproteinases (MMPs) are under investigation for the treatment of cancer, arthritis, and cardiovascular disease. Here, we report a class of highly selective MMP-13 inhibitors (pyrimidine dicarboxamides) that exhibit no detectable activity against other MMPs. The high-resolution X-ray structures of three molecules of this series bound to MMP-13 reveal a novel binding mode characterized by the absence of interactions between the inhibitors and the catalytic zinc. The inhibitors bind in the S1' pocket and extend into an additional S1' side pocket, which is unique to MMP-13. We analyze the determinants for selectivity and describe the rational design of improved compounds with low nanomolar affinity. 相似文献
4.
Heo YS Ryu JM Park SM Park JH Lee HC Hwang KY Kim J 《Experimental & molecular medicine》2002,34(3):211-223
Protein-tyrosine phosphatases (PTPs) constitute a family of receptor-like, and cytoplasmic enzymes, which catalyze the dephosphorylation of phosphotyrosine residues in a variety of receptors and signaling molecules. Together with protein tyrosine kinases (PTKs), PTPs are critically involved in regulating many cellular signaling processes. In this study, diverse compounds were screened for PTP inhibition and selectively screened for inhibitors with the end product inhibition properties. Among phosphate analogues and their derivatives for PTP inhibition, Keggin compounds phosphomolybdate (PM) and phosphotungstate (PT) strongly inhibited both PTP-1B and SHP-1, with K(i) values of 0.06-1.2 micromM in the presence of EDTA. Unlike the vanadium compounds, inhibition potencies of PM and PT were not significantly affected by EDTA. PM and PT were potent, competitive inhibitors for PTPs, but relatively poor inhibitors of Ser/Thr phosphatase. Interestingly, PM and PT did not inhibit alkaline phosphatase at all. The crystal structure of PTP-1B in complex with PM, at 2.0 A resolution, reveals that MoO(3), derived from PM by hydrolysis, binds at the active site. The molybdenium atom of the inhibitor is coordinated with six ligands: three oxo-ligands, two apical water molecules and a S atom of the catalytic cysteine residue. In support of the crystallographic finding, we observed that molybdenium oxides (MoO(3), MoO(2), and MoO(2)Cl(2)) inhibited PTP-1B with IC(50) in the range 5-15 micromM. 相似文献
5.
Y Liu A Bishop L Witucki B Kraybill E Shimizu J Tsien J Ubersax J Blethrow D O Morgan K M Shokat 《Chemistry & biology》1999,6(9):671-678
BACKGROUND: Small-molecule inhibitors that can target individual kinases are powerful tools for use in signal transduction research. It is difficult to find such compounds because of the enormous number of protein kinases and the highly conserved nature of their catalytic domains. Recently, a novel, potent, Src family selective tyrosine kinase inhibitor was reported (PP1). Here, we study the structural basis for this inhibitor's specificity for Src family kinases. RESULTS: A single residue corresponding to Ile338 (v-Src numbering; Thr338 in c-Src) in Src family tyrosine kinases largely controls PP1's ability to inhibit protein kinases. Mutation of Ile338 to a larger residue such as methionine or phenylalanine in v-Src makes this inhibitor less potent. Conversely, mutation of Ile338 to alanine or glycine increases PP1's potency. PP1 can inhibit Ser/Thr kinases if the residue corresponding to Ile338 in v-Src is mutated to glycine. We have accurately predicted several non-Src family kinases that are moderately (IC(50) approximately 1 microM) inhibited by PP1, including c-Abl and the MAP kinase p38. CONCLUSIONS: Our mutagenesis studies of the ATP-binding site in both tyrosine kinases and Ser/Thr kinases explain why PP1 is a specific inhibitor of Src family tyrosine kinases. Determination of the structural basis of inhibitor specificity will aid in the design of more potent and more selective protein kinase inhibitors. The ability to desensitize a particular kinase to PP1 inhibition of residue 338 or conversely to sensitize a kinase to PP1 inhibition by mutation should provide a useful basis for chemical genetic studies of kinase signal transduction. 相似文献
6.
Nuernberger P Lee KF Bonvalet A Bouzhir-Sima L Lambry JC Liebl U Joffre M Vos MH 《Journal of the American Chemical Society》2011,133(43):17110-17113
In heme-based sensor proteins, ligand binding to heme in a sensor domain induces conformational changes that eventually lead to changes in enzymatic activity of an associated catalytic domain. The bacterial oxygen sensor FixL is the best-studied example of these proteins and displays marked differences in dynamic behavior with respect to model globin proteins. We report a mid-IR study of the configuration and ultrafast dynamics of CO in the distal heme pocket site of the sensor PAS domain FixLH, employing a recently developed method that provides a unique combination of high spectral resolution and range and high sensitivity. Anisotropy measurements indicate that CO rotates toward the heme plane upon dissociation, as is the case in globins. Remarkably, CO bound to the heme iron is tilted by ~30° with respect to the heme normal, which contrasts to the situation in myoglobin and in present FixLH-CO X-ray crystal structure models. This implies protein-environment-induced strain on the ligand, which is possibly at the origin of a very rapid docking-site population in a single conformation. Our observations likely explain the unusually low affinity of FixL for CO that is at the origin of the weak ligand discrimination between CO and O(2). Moreover, we observe orders of magnitude faster vibrational relaxation of dissociated CO in FixL than in globins, implying strong interactions of the ligand with the distal heme pocket environment. Finally, in the R220H FixLH mutant protein, where CO is H-bonded to a distal histidine, we demonstrate that the H-bond is maintained during photolysis. Comparison with extensively studied globin proteins unveils a surprisingly rich variety in both structural and dynamic properties of the interaction of a diatomic ligand with the ubiquitous b-type heme-proximal histidine system in different distal pockets. 相似文献
7.
Phosphopantetheine-modified carrier domains play a central role in the template-directed, biosynthesis of several classes of primary and secondary metabolites. Fatty acids, polyketides, and nonribosomal peptides are constructed on multidomain enzyme assemblies using phosphopantetheinyl thioester-linked carrier domains to traffic and activate building blocks. The carrier domain is a dynamic component of the process, shuttling pathway intermediates to sequential enzyme active sites. Here, we report an approach to structurally fix carrier domain/enzyme constructs suitable for X-ray crystallographic analysis. The structure of a two-domain construct of Escherichia coli EntF was determined with a conjugated phosphopantetheinyl-based inhibitor. The didomain structure is locked in an active orientation relevant to the chemistry of nonribosomal peptide biosynthesis. This structure provides details into the interaction of phosphopantetheine arm with the carrier domain and the active site of the thioesterase domain. 相似文献
8.
The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 ? crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression. 相似文献
9.
10.
In Glioblastoma (GBM) brain tumors, both Gremlin-1 and Noggin are reported to bind to BMP and inhibit BMP-signaling, thereby allowing the cell to maintain tumorous morphology. Enlisting the interfacial residues important for protein–protein complex formation between BMPs (BMP-2 and BMP-7) and antagonists (Gremlin-1 and Noggin), we analyzed the structural basis of their interactions. We found possible key mutations that destabilize these complexes, which may prevent GBM development. It was also observed that when the interfacial residues were either mutated to histidine or tryptophan, it led to higher destabilization energy values. Besides, our study of the Noggin interactive model of BMP-2 suggested preferential binding at binding site II over binding site I. In the case of Gremlin-1 and BMPs, our research, along with few previous studies, indicates a close-ended cis-trans interactive model. 相似文献
11.
Cytochrome P450 (CYP) 3A4 is responsible for the oxidative degradation of more than 50% of clinically used drugs. By means of molecular dynamics simulations with the newly developed force field parameters for the heme-thiolate group and its dioxygen adduct, we examine the differences in structural and dynamic properties between CYP3A4 in the resting form and its complexes with the substrate progesterone and the inhibitor metyrapone. The results indicate that the broad substrate specificity of CYP3A4 stems from the malleability of a loop (residues 211-218) that resides in the vicinity of the channel connecting the active site and bulk solvent. However, the high-amplitude motion of the flexible loop is found to be damped out upon binding of the inhibitor or the substrate in the active site. In the resting form of CYP3A4, a structural water molecule is bound to the sixth coordination position of the heme iron, stabilizing the octahedral coordination geometry. In addition to the direct coordination of metyrapone to the heme iron, the hydrogen bond interaction between the inhibitor carbonyl group and the side chain of Ser119 also contributes significantly to stabilizing the CYP3A4-metyrapone complex. On the other hand, progesterone is stabilized in the active site by the formation of two hydrogen bonds with Ser119 and Arg106, as well as by the van der Waals interactions with the heme and hydrophobic residues. The structural and dynamic features of the CYP3A4-progesterone complex indicate that the oxidative degradation of progesterone occurs through hydroxylation at the C16 position by the reactive oxygen coordinated to the heme iron. 相似文献
12.
Fang YY Ray BD Claussen CA Lipkowitz KB Long EC 《Journal of the American Chemical Society》2004,126(17):5403-5412
A study of the minor-groove recognition of A/T-rich DNA sites by Ni(II).L-Arg-Gly-His and Ni(II).D-Arg-Gly-His was carried out with a fluorescence-based binding assay, one- and two-dimensional (1D and 2D) NMR methodologies, and molecular simulations. Fluorescence displacement titrations revealed that Ni(II).L-Arg-Gly-His binds to A/T-rich sequences better than the D-Arg diastereomer, while NMR investigations revealed that both metallopeptides bind to the minor groove of an AATT core region as evidenced by an intermolecular nuclear Overhauser effect (NOE) between each metallopeptide His imidazole C4 proton and the C2 proton of adenine. Results from molecular dynamics simulations of these systems were consistent with the experimental data and indicated that the His imidazole N-H, the N-terminal peptide amine, and Arg side chains of each metallopeptide are major determinants of minor-groove recognition by functioning as H-bond donors to the O2 of thymine residues or N3 of adenine residues. 相似文献
13.
Photocontrol and processing of LHCP II apoprotein in Euglena: possible role of Golgi and other cytoplasmic sites. 总被引:4,自引:0,他引:4
J A Schiff S D Schwartzbach T Osafune E Hase 《Journal of photochemistry and photobiology. B, Biology》1991,11(2):219-236
Like other green photosynthetic eukaryotes, cells of Euglena gracilis var. bacillaris and strain Z contain a light-harvesting chlorophyll a/b complex associated with photosystem II. In Euglena, the formation of the 26.5 kDa principal light-harvesting chlorophyll a/b binding protein of photosystem II (LHCP II) has a number of unusual features. The precursors to LHCP II are large polyproteins containing multiple copies of LHCP II, and photocontrol of their formation is largely translational. Under conditions favoring LHCP II accumulation in the thylakoids, a reaction with anti-LHCP II antibody can be observed in the Golgi by immunogold electron microscopy. The timing of the immunoreaction in the Golgi in synchronous cells and in cells undergoing normal light-induced chloroplast development suggests that the nascent LHCP II passes through the Golgi on the way to the thylakoids. The compartmentalized osmiophilic structure (COS) also shows an immunoreaction. These observations, and other discussed in this paper, suggest that light permits translation of polyprotein LHCP II precursors on cytoplasmic ribosomes of the rough endoplasmic reticulum (ER) and that these pass through the ER to the Golgi where, presumably, further modifications take place. Since an LHCP II immunoreaction is found in Golgi vesicles, these may transport the nascent LHCP II to the plastid and facilitate its uptake. 相似文献
14.
Sergey Paramonov Stéphanie Delbaere Olga Fedorova Yuri Fedorov Vladimir Lokshin André Samat Gaston Vermeersch 《Journal of photochemistry and photobiology. A, Chemistry》2010,209(2-3):111-120
Complexation between a benzopyran entity annulated with a 15-crown-5 ether unit and three metal cations, Mg2+, Ba2+, and Pb2+ has been investigated by UV–vis and NMR spectroscopy. The complexes composition, the stability constants and the structural arrangements have been determined. The photochemical and thermal properties of the photochromic benzopyran derivative in absence and in the presence of metals have been studied. The metal-ion-binding ability of the fused macrocyclic entity drastically modifies photochromism by decreasing the thermal stability of photomerocyanines, whereas the metal cations are partially ejected from crown-ether cavity when benzopyran is in open configuration. 相似文献
15.
16.
It is shown from recent results based on the statistical mechanics treatment of ionic solutions that the notion of an equilibrium between free ions and paired ions which wasa priori introduced in the chemical model of Bjerrum is essentially correct. The mass-action law which is deduced from such a model is indeed derivable from the more exact treatments of Mayer, Rasaiah, and Friedman starting directly from Hamiltonian models and without any assumptions as to the chemical structure of the ionic solute in the solution. The transformation relation from a primitive-model result to any short-range Hamiltonian model equation is given. It allows a simple mathematical treatment of experimental data for dilute solutions, the derivation of useful information on the Gurney solvation effects, and an interpretation of the multistep association concept. 相似文献
17.
Cheng Y Zhang F Chen Q Gao J Cui W Ji M Tung CH 《Journal of chemical information and modeling》2011,51(10):2626-2635
In the present study, the impacts of G198N and W128F mutations on the recognition between Aurora A and targeting protein of Xenopus kinesin-like protein 2 (TPX2) were investigated using molecular dynamics (MD) simulations, free energy calculations, and free energy decomposition analysis. The predicted binding free energy of the wild-type complex is more favorable than those of three mutants, indicating that both single and double mutations are unfavorable for the Aurora A and TPX2 binding. It is also observed that the mutations alternate the binding pattern between Aurora A and TPX2, especially the downstream of TPX2. An intramolecular hydrogen bond between the atom OD of Asp11(TPX2) and the atom HE1 of Trp34(TPX2) disappear in three mutants and thus lead to the instability of the secondary structure of TPX2. The combination of different molecular modeling techniques is an efficient way to understand how mutation has impacts on the protein-protein binding and our work gives valuable information for the future design of specific peptide inhibitors for Aurora A. 相似文献
18.
The zinc(II) complex of 1-(4-quinoylyl)methyl-1,4,7,10-tetraazacyclododecane (cy4q) binds selectively to thymine bulges in DNA and to a uracil bulge in RNA. Binding constants are in the low-micromolar range for thymine bulges in the stems of hairpins, for a thymine bulge in a DNA duplex, and for a uracil bulge in an RNA hairpin. Binding studies of Zn(cy4q) to a series of hairpins containing thymine bulges with different flanking bases showed that the complex had a moderate selectivity for thymine bulges with neighboring purines. The dissociation constants of the most strongly bound Zn(cy4q)-DNA thymine bulge adducts were 100-fold tighter than similar sequences with fully complementary stems or than bulges containing cytosine, guanine, or adenine. In order to probe the role of the pendent group, three additional zinc(II) complexes containing 1,4,7,10-tetraazacyclododecane (cyclen) with aromatic pendent groups were studied for binding to DNA including 1-(2-quinolyl)methyl-1,4,7,10-tetraazacyclododecane (cy2q), 1-(4-biphenyl)methyl-1,4,7,10-tetraazacyclododecane (cybp), and 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine (dsc). The Zn(cybp) complex binds with moderate affinity but little selectivity to DNA hairpins with thymine bulges and to DNA lacking bulges. Similarly, Zn(dsc) binds weakly both to thymine bulges and hairpins with fully complementary stems. The zinc(II) complex of cy2q has the 2-quinolyl moiety bound to the Zn(II) center, as shown by (1)H NMR spectroscopy and pH-potentiometric titrations. As a consequence, only weak (500 μM) binding is observed to DNA with no appreciable selectivity. An NMR structure of a thymine-bulge-containing hairpin shows that the thymine is extrahelical but rotated toward the major groove. NMR data for Zn(cy4q) bound to DNA containing a thymine bulge is consistent with binding of the zinc(II) complex to the thymine N3(-) and stacking of the quinoline on top of the thymine. The thymine-bulge bound zinc(II) complex is pointed into the major groove, and there are interactions with the guanine positioned 5' to the thymine bulge. 相似文献
19.
20.
Biprashekhar Chakraborty Raisa Mukherjee Jayati Sengupta 《Journal of computer-aided molecular design》2013,27(2):173-184
The translational machinery has been found to be the target for a number of antibiotics. One such antibiotic sordarin selectively inhibits fungal translation by impairing the function of elongation factor 2 (eEF2) while being ineffective to higher eukaryotes. Surprisingly, sordarin is not even equally effective in impairing translation for all fungal species. The binding cavity of sordarin on eEF2 has been localized by X-ray crystallographic study and its unique specificity towards sordarin has been attributed to the species specific substitutions within a stretch of amino acids (sordarin specificity region, SSR) at the entrance of the cavity. In this study, we have analyzed the sordarin-binding cavity of eEF2 from different species both in isolated and ribosome-bound forms in order to decipher the mechanism of sordarin binding selectivity. Our results reveal that the molecular architecture as well as the microenvironment of the sordarin-binding cavity changes significantly from one species to another depending on the species specific substitutions within the cavity. Moreover, eEF2 binding to ribosome aggravates the effects of these substitutions. Thus, this study, while shedding light on the molecular mechanism underpinning the selective inhibitory effects of sordarin, will also be a helpful guide for future studies aiming at developing novel antifungal drugs with broader spectrum of activity. 相似文献