首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption and dissociation of methane and carbon dioxide for reforming on nickel catalysts were extensively investigated by TPSR, TPD, XPS and pulse reaction methods. These studies showed that the decomposition of methane results in the formation of at least three kinds of surface carbon species on supported nickel catalysts. Carbidic Cα, carbonaceous Cβ and carbidic clusters C-γ surface carbon species formed by the decomposition of methane demonstrated different surface mobility, thermal stability and reactivity. Carbidic Cα is a very active and important intermediate in carbon dioxide reforming with methane, and the carbidic clusters Cγ species might be the precursor of surface carbon deposition. The partially dehydrogenated Cβ species can react with H2 or CO2 to form CH4 or CO. On the other hand, it was proven that CO2 can be weakly adsorbed on supported nickel catalysts, and only one kind of CO2 adsorption state is formed. The interaction mechanism between the species dissociated from CH4  相似文献   

2.
A set of mono-and bimetallic(Zn-Co) supported ZSM-5 catalysts was first prepared by PEG-additive method. The physicochemical properties of the catalysts were investigated by FTIR, XPS, XRD, N_2adsorption-desorption measurements, SEM, EDS and NH3-TPD techniques. The physicochemical properties showed that the Zn Co_2O_4 spinel oxide was formed on the ZSM-5 support and provided effectual synergetic effect between Zn and Co species for the bimetallic catalyst. Furthermore, bimetallic supported ZSM-5 catalyst exhibited weak, moderate and strong acidic sites, while the monometallic supported ZSM-5 catalyst showed only weak and moderate or strong acidic sites. Their catalytic performances for thermal decomposition of hexamethylene–1,6–dicarbamate(HDC) to hexamethylene–1,6–diisocyanate(HDI) were then studied. It was found that the bimetallic supported ZSM-5 catalysts,especially Zn-2Co/ZSM-5 catalyst showed excellent catalytic performance due to the good synergetic effect between Co and Zn species, which provided a suitable contribution of acidic sites. HDC conversion of 100% with HDI selectivity of 91.2% and by-products selectivity of 1.3% could be achieved within short reaction time of 2.5 h over Zn-2Co/ZSM-5 catalyst.  相似文献   

3.
The adsorption and dissociation of methane and carbon dioxide for reforming on nickel catalysts were extensively investigated by TPSR, TPD, XPS and pulse reaction methods. These studies showed that the decomposition of methane results in the formation of at least three kinds of surface carbon species on supported nickel catalysts. Carbidic Cα, carbonaceous Cβ and carbidic clusters Cγ surface carbon species formed by the decomposition of methane demonstrated different surface mobility, thermal stability and reactivity. Carbidic Cα is a very active and important intermediate in carbon dioxide reforming with methane, and the carbidic clusters Cγ species might be the precursor of surface carbon deposition. The partially dehydrogenated Cβ species can react with H2 or CO2 to form CH4 or CO. On the other hand, it was proven that CO2 can be weakly adsorbed on supported nickel catalysts, and only one kind of CO2 adsorption state is formed. The interaction mechanism between the species dissociated from CH4 and CO2 during reforming was then hypothesized.  相似文献   

4.
16.6%Co/γ-Al_2O_3 catalysts prepared by incipient wetness impregnation method were used for Fischer-Tropsch synthesis.The support was pre-treated with different concentration of NH_4NO_3 aqueous solution.The effect of support pre-treatment on the properties of support and performance of supported- cobalt-based catalysts was investigated.To treat the support with NH_4NO_3 aqueous solution enlarged the pore ofγ-Al_2O_3,decreased the impurity Na_2O content,and weakened the surface acidity ofγ-Al_2O_3. The change in the properties of the support decreased the interaction between cobalt species and support, enhanced the CO hydrogenation rate and the C_(5 )selectivity.For all catalysts,increasing the reaction temperature increased the CO hydrogenation rate or the CO conversion,slightly decreased the total hydrocarbon selectivity,and favored the formation of methane and light hydrocarbons,while the chain growth probability decreased.For 16.6%Co/γ-Al_2O3 catalysts,prepared with the support treated with 100 g/L NH_4NO3 aqueous solution,the CO conversion,the CH_4 selectivity,and the C_(5 )selectivity were 83.13%,6.86% and 82.75% respectively,and the chain growth probability was 0.83 under the condition of 493 K,1.5 MPa,500 h~(-1)and the molar ratio of H_2 to CO being 2.0 in feed.  相似文献   

5.
The cobalt nanoparticles over γ-Al_2O_3 support were prepared via chemical reduction of CoCl_2·6H_2O using NaBH_4 with various values of pH in the range of 11. 92-13. 80. Synthesized catalysts were studied through X-ray diffraction( XRD),N_2 adsorption/desorption( BET),H_2-temperature programmed reduction( H_2-TPR),H_2-chemisorption,O_2 pulse titration and temperature programmed oxidation( TPO) methods. Obtained results exhibited the synthesis solution pH showed a significant influence on the activity and selectivity in partial oxidation of methane reaction. The methane conversion,CO selectivity and H_2 yield were enhanced by increasing of the synthesis solution pH. Compared to other catalysts,the catalyst that synthesized at pH of 13.80,showed a superior ability in syngas production with a H_2/CO ratio of near 2 and also a proper stability against deactivation during the partial oxidation of methane.  相似文献   

6.
It is showed that La_2O_3 and NiO could disperse on γ-Al_2O_3 as a monolayer and theirutmost monolayer capacities determined by quantitative XRD are 0.28g/100m~2 and 0.09g/100m~2respectively. In the methanation catalyst, Ni/La_2O_3/γ-Al_2O_3, the La_2O_3 is dispersed on thesurface of γ-Al_2O_3 as a monolayer and the metallic nickel crystallites are supported on thesurface with La_2O_3. It has been found by the XRD peak broadening that the average size ofnickel crystallites on the surface with La_2O_3 is much smaller than that without La_2O_3. Thismay be one of the main reasons for the increase of activity and thermostability of the La_2O_3containing methanation catalyst. This idea of modifying support surface by monolayercompound can also be applied to other catalysts.  相似文献   

7.
Surface structures of Pt-Sn and Pt-Fe bimetallic catalysts have been investigated by means of Mssbauer spectroscopy, Pt-L_Ⅲ-edge EXAFS and H_2-adsorption. The results showed that the second component, such as Sn or Fe, remained in the oxidative state and dispersed on the γ-Al_2O_3 surface after reduction, while Pt was completely reduced to the metallic state and dispersed on either the metal oxide surface or the γ-Al_2O_3 surface. By correlating the distribution of Pt species on different surfaces with the reaction and adsorption performances, it is proposed that two kinds of active Pt species existed on the surfaces of both catalysts, named M_1 sites and M_2 sites. M_1 sites are the sites in which Pt directly anchored on the γ-Al_2O_3 surface, while M_2 sites are those in which Pt anchored on the metal oxide surface. M_1 sites are favorable for low temperature H_2 adsorption, and responsible for the hydrogenolysis reaction and carbon deposition, while M_2 sites which adsorb more H_2 at higher tem  相似文献   

8.
Iron catalysts supported on γ-Al_2O_3 and zeolite were prepared fromorganic solution of Fe_3 (CO)_(12). TPCR (Temperature-programmed Catalytic Re-action) and DRS (Diffuse Reflectance Spectroscopy) were used to monitor thereaction and characterize the catalysts. Fe/γ-Al_2O_3 catalyst reduced at 150℃or 250℃ not only has higher activity than that reduced at 450℃, but also pro-duces ethane and ethylene during the (CO + H_2) reaction. Fe/zeolite catalystreduced at 250℃ displays higher activity than that reduced at 450℃, it alsoproduces ethylene, ethane and propane. DRS results suggest that Fe-Fe bondsexist on the catalysts activated under mild conditions.  相似文献   

9.
Ni catalysts supported on various mixed oxides of Al2O3 with rare earth oxide and transitional metal oxides were synthesized. The studies focused on the measurement of the autothermal reforming of methane to hydrogen over Ni catalysts supported on the mixed oxide ZrxCe30-xAl70Oδ (x=5, 10, 15). The catalytic performance of Ni/Zr10Ce20Al70Oδ was better than that of other catalysts. XRD results showed that the addition of Zr to Ni/Ce30Al70Oδ prevented the formation of NiAl2O4 and facilitated the dispersion of NiO. Effects of CuO addition to Zr10Ce20Al70Oδ were also investigated. The activity of Ni catalyst supported on CuO-ZrO2-CeO2-Al2O3 was somewhat affected and the Ni/Cu5Zr10Ce20Al65Oδ showed the best catalytic performance with the highest CH4 conversion, yield of H2, selectivity for H2 and H2/CO production ratio in operation temperatures ranging from 650 to 750℃.  相似文献   

10.
The deactivation behavior by crystallite growth of nickel nanoparticles on various supports(carbon nanofibers, zirconia, Si C, α-Al_2O_3 and γ-Al_2O_3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ~10 wt% were prepared by impregnation of carbon nanofibers(CNF),Zr O_2, SiC, γ-Al_2O_3 and α-Al_2O_3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF ~ ZrO_2 SiC γ-Al_2O_3 α-Al_2O_3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles(~12 nm) supported on α-Al_2O_3 were found to outgrow Ni particles with initially larger size(~20 nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.  相似文献   

11.
Copper-based catalysts for CO_2 hydrogenation to methanol are supported on ZrO_2 and CeO_2, respectively.Reaction results at 3.0 MPa and temperatures between 200 and 300 °C reveal that Cu catalysts supported on ZrO_2 and CeO_2 exhibit better activity and selectivity than pure Cu catalyst due to Cu-support(ZrO_2 and CeO_2) interaction. Combining the structural characterizations with in-situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS), Cu/CeO_2 shows the higher methanol selectivity due to the formation of main carbonates intermediates, which are closely related with the oxygen vacancies over Cu/CeO_2. In contrast, bicarbonate and carboxyl species are observed on Cu/ZrO_2, which originates from the hydroxyl groups presented on catalyst surfaces. Difference in CO_2 adsorption intermediates results in the distinct methanol selectivity over the two catalysts.  相似文献   

12.
CO2 reforming of methane (CDRM) was carried out over MgO supported Ni catalysts with various Ni loadings. The preparation of MgO supported Ni catalysts via surfactant-assisted precipitation method led to the formation of a nanocrystalline carrier for nickel catalysts. The synthesized samples were characterized by XRD, N2 adsorption-desorption, H2 chemisorption, TPR, TPO and SEM techniques. It was found that the high catalytic activity and stability of the prepared catalysts could be attributable to high dispersion of reduced Ni species and basicity of support surface. In addition, the effect of feed ratio, nickel loading and GHSV on the catalytic performance of CDRM over the catalysts were investigated.  相似文献   

13.
In terms of the reaction of CO_2 reduction to CO with hydrogen, CO_2 conversion is very low at low temperature due to the limitation of thermodynamic equilibrium(TE). To overcome this limitation, plasma catalytic reduction of CO_2 to CO in a catalyst-filled dielectric barrier discharge(DBD) reactor is studied. An enhanced effect of plasma on the reaction over Au/CeO_2 catalysts is observed. For both the conventionally catalytic(CC) and plasma catalytic(PC, Pin= 15 W) reactions under conditions of 400 °C, H_2/CO_2= 1,200 SCCM, GHSV = 12,000 mL·g~(-1)cat·h~(-1), CO_2 conversions over Au/CeO_2 reach 15.4% and 25.5% due to the presence of Au, respectively, however, those over CeO_2 are extremely low and negligible. Moreover,CO_2 conversion over Au/CeO_2 in the PC reaction exceeds 22.4% of the TE conversion. Surface intermediate species formed on the catalyst samples during the reactions are determined by in-situ temperatureprogrammed decomposition(TPD) technique. Interestingly, it disclosed that in the PC reaction, the formation of formate intermediate is enhanced by plasma, and the acceleration by plasma in the decomposition of formate species is much greater than that in the formation of formate species on Au/CeO_2. Enhancement factor is introduced to quantify the enhanced effect of plasma. Lower reactor temperature, higher gas hourly space velocity(GHSV), and lower molar ratio of H_2/CO_2 would be associated with larger enhancement factor.  相似文献   

14.
The aerobic oxidation of glycerol provides an economically viable route to glyceraldehyde, dihydroxyacetone and glyceric acid with versatile applications, for which monometallic Pt, Au and Pd and bimetallic Au–Pt, Au–Pd and Pt–Pd catalysts on Ti O2 were examined under base-free conditions. Pt exhibited a superior activity relative to Pd, and Au–Pd and Pt–Pd while Au was essentially inactive. The presence of Au on the Au–Pt/Ti O2 catalysts led to their higher activities(normalized per Pt atom) in a wide range of Au/Pt atomic ratios(i.e.1/3–7/1), and the one with the Au/Pt ratio of 3/1 exhibited the highest activity. Such promoting effect is ascribed to the increased electron density on Pt via the electron transfer from Au to Pt, as characterized by the temperature-programmed desorption of CO and infra-red spectroscopy for CO adsorption. Meanwhile,the presence of Au on Au–Pt/Ti O2, most like due to the observed electron transfer, changed the product selectivity, and facilitated the oxidation of the secondary hydroxyl groups in glycerol, leading to the favorable formation of dihydroxyacetone over glyceraldehyde and glyceric acid that were derived from the oxidation of the primary hydroxyl groups. The synergetic effect between Au and Pt demonstrates the feasibility in the efficient oxidation of glycerol to the targeted products, for example, by rational tuning of the electronic properties of metal catalysts.  相似文献   

15.
In the present work, different silica-based supported cobalt (Co) catalysts were synthesized and used for CO2 hydrogenation for methanation. Different supports, such as SSP, MCM-41, TiSSP and TiMCM were used to prepare Co catalysts with 20 wt% Co loading. The supports and catalysts were characterized by means of N2 physisorption, XRD, SEM/EDX, XPS, TPR and CO chemisorption. It is found that after calcination of catalysts, Ti is present in the form of anatase. The introduction of Ti plays important roles in the properties of Co catalysts by:(i) facilitating the reduction of Co oxides species which are strongly interacted with support, (ii) preventing the formation of silicate compounds, and (iii) inhibiting the RWGS reaction. Based on CO2 hydrogenation, the CoTiMCM catalyst exhibites the highest activity and stability.  相似文献   

16.
The selective catalytic oxidation of toluene with hydrogen peroxide over V-Mo-based catalysts under mild conditions was studied.The promotion effect of Mo on the catalysts was studied with V/Al2O3 and Mo/Al2O3 as reference samples.The catalysts were characterized by XRD,TPR,and XPS techniques.The results show that the addition of Mo to V/Al2O3 may change the distribution of V species on Al2O3 surface.Over V-Mo/Al2O3 catalyst,highly dispersed amorphous V species facilitates benzaldehyde formation,and crystalline V2O5 species increases the conversion of toluene but decreases the selectivity to benzaldehyde,while AlVMoO7 species favors both the conversion of toluene and the formation of cresols.The yield of benzaldehyde depends remarkably on the surface O/Al and Mo/V atomic ratios,and gets to a maximum value of 13.2% with a selectivity of 79.5% at an O/Al atomic ratio of 3.0 and Mo/V atomic ratio of 0.7.  相似文献   

17.
Various mesoporous chromia alumina catalysts were prepared by five different methods based on a metal-organic framework MIL-101 and their catalytic performances over isobutane dehydrogenation were investigated. The highly dispersed chromium species were produced on catalyst KCr Al-I1 with largest specific surface area of 198 m2 g-1prepared with aluminium isopropoxide(Al(i-OC3H7)3) by ultrasonic impregnation method. However, the catalyst KCr Al-I2 synthesized by stirring impregnation possessed crystalline α-Cr2O3 phase, which was poorly dispersed. Two types of Cr-rich and Al-rich Crx Al2-xO3 solid solutions, designated as Cr Al-I and Cr Al-II phase, were formed over the catalysts KCr Al-I3(prepared by Al(i-OC3H7)3with nitric acid regulation), KCr Al-C4(prepared by aluminium chloride hexahydrate) and KCr Al-N5(prepared by aluminium nitrate nonahydrate). Catalytic evaluation results revealed that KCr Al-I1 exhibited the high isobutane conversion due to its highly dispersed chromium species. However, KCr Al-I3, KCr Al-C4 and KCr Al-N5 showed the higher isobutene selectivity(95.2%-96.4%) on account of the formation of chromia alumina solid solutions in the catalysts. Moreover, the solid solution over the chromia alumina catalysts could greatly suppress the coke formation.  相似文献   

18.
Methane Decomposition over Ni/α-Al_2O_3 Promoted by La_2O_3 and CeO_2   总被引:1,自引:0,他引:1  
The decomposition of methane on Ni/a-Al2O3 modified by La2O3 and CeO2 with different contents has been investigated and the ralationship between methane decomposition and removal of carbon by CO2 over these catalyst has also been studied by pulse-chromatography. The catalysts were characterized by TPR and XRD. It was shown that Ni/a-Al2O3 could be promoted by adding La2O3, and the carbon species produced over this catalyst was activated and eliminated by CO2. But CeO2 would suppress the decomposition of methane over Ni crystallite. Both La2O3 and CeO2 can inhibit aggregation of the Ni particles. Decomposition of methane over the Ni-based catalysts is structure sensitive to a certain extent.  相似文献   

19.
The dispersion of the active phase and loading capacity of the Mo species on carbon nanotube (CNT) was studied by the XRD technique. The reducibility properties of Co-Mo catalysts in the oxide state over CNTs were investigated by TPR, while the sulfided Co-Mo/CNT catalysts were characterized by means of the XRD and LRS techniques. The activity and selectivity with respect to the hydrodesulfurization (HDS) performances on carbon nanotube supported Co-Mo catalysts were evaluated. It was found that the main active molybdenum species in the oxide state MoO3/CNT catalysts were MoO2, but not MoO3, as generally expected. The maximum loading before the formation of the bulk phase was lower than 6% (percent by mass, based on MoO3). TPR studies revealed that the active species in the oxide state Co-Mo/CNT catalysts were reduced more easily at relatively lower temperatures in comparison to those of the Co-Mo/γ-Al2O3 catalysts, indicating that the CNT support promoted or favored the reduction of the active species. The active species of a Co-Mo-0.7/CNT catalyst were more easily reduced than those of the Co-Mo/CNT catalysts with Co/Mo atomic ratios of 0.2, 0.35, and 0.5, respectively, suggesting that the Co/Mo atomic ratio has a great effect on the reducibility of the active species. It was found that the incorporation of cobalt improved the dispersion of the molybdenum species on the support, and a phenomenon of mobilization and re-dispersion had occurred during the sulfurization process, resulting in low valence state Mo3S4 and Co-MoS2.17 active phases. HDS measurements showed that the Co-Mo/CNT catalysts were more active than the Co-Mo/γ-Al2O3 ones for the desulfurization of DBT, and the hydrogenolysis/hydrogenation selectivity of the Co-Mo/CNT catalysts was also much higher than those of the Co-Mo/γ-Al2O3. The Co-Mo/CNT catalyst with a Co/Mo atomic ratio of 0.7 showed the highest activity, whereas the catalyst with a Co/Mo atomic ratio of 0.35 had the highest selectivity.  相似文献   

20.
<正>The synthesis of stearic acid triethanolamine ester over solid acid catalysts was investigated.The results showed that the catalytic activity and selectivity of zirconium sulfate supported on SBA-15(6)(pore diameter 6 nm) is better than that of commonly used hypophosphorous acid,zirconium sulfate supported on MCM-41 and zirconium sulfate supported on SBA-15(9)(pore diameter 9 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号