首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The electrocatalytic oxidation of formic acid at a gold electrode functionalized with FePt nanoparticles was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in a mixed solution of 0.1 M HCOOH and 0.1 M HClO4. The FePt bimetallic nanoparticles, with a mean diameter of 3 nm, were prepared by a chemical reduction method. The Au/FePt nanostructured electrode was prepared firstly by the deposition of FePt nanoparticles onto a clean Au electrode surface, followed by ultraviolet ozone treatment to remove the organic coating. In CV measurements, two well-defined anodic peaks were observed at +0.20 and +0.51 V (vs. a Ag/AgCl quasi-reference). The anodic peak at +0.20 V was attributed to the oxidation of HCOOH to CO2 on surface unblocked by CO, whereas the peak at +0.51 V was ascribed to the oxidation of surface-adsorbed CO (an intermediate product of HCOOH oxidation) and further oxidation of bulk HCOOH. From the onset potential and current density of the electro-oxidation of HCOOH, FePt nanoparticles exhibit excellent electrocatalytic activities as compared to Pt and other metal alloys. EIS measurements were carried out to further examine the reaction kinetics involved in the HCOOH electro-oxidation. The EIS responses were found to be strongly dependent on electrode potentials. At potentials more positive than -0.25 V (vs. Ag/AgCl), pseudo-inductive behavior was typically observed. At potentials between +0.3 and +0.5 V, the impedance response was found to reverse from the first quadrant to the second quadrant; such negative Faradaic impedance was indicative of the presence of an inductive component due to the oxidation of surface-adsorbed CO. The impedance responses returned to normal behavior at more positive potentials (+0.6 to +0.9 V). The mechanistic variation was attributed to the formation of different intermediates (CO or oxygen containing species) on the electrode surface in different potential regions. Two equivalent circuits were proposed to model these impedance behaviors.  相似文献   

2.
Three different single crystals, Au(111), Au(332), and Au(331), were used as the substrate for palladium deposition in the underpotential deposition (UPD) regime. The Au(111) single crystal was used for control experiments to compare the behavior of the vicinal surfaces. Cyclic voltammetry in 0.1 M sulfuric acid solution, as well as electrochemical impedance spectroscopy (EIS) were used to study the hydrogen adsorption on the Pd thin films. Our results suggest that the voltammetric peaks at approximately 0.3 V versus the reversible hydrogen electrode (RHE) are related to the adsorption of hydrogen at large palladium terraces, and that at least two adjacent Pd rows are needed in order for the adsorption to take place. Further cycling to more positive potentials leads to the oxidation and slow dissolution of the Pd film. The behavior of the oxidation cycles is explained in terms of a higher stability of Pd at the steps.  相似文献   

3.
In this study, a new composite electrode of palladium (Pd) nanoparticles dispersed on polypyrrole-reduced graphene oxide (PPy-rGO) loaded on foam-nickel was achieved by galvanostatic method. Characterization of structures, morphology and crystallinity of the synthesized materials were investigated by scanning electron microscopes (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy and electrochemical impedance spectroscopy (EIS). The results of XPS and XRD demonstrated Pd showed primarily as Pd0. From SEM and TEM results, we had seen that Pd nanoparticles were dispersible well on the composite electrode. Raman spectroscopy was used to show the state of graphene oxide and further demonstrated that PPy and rGO had existed of on the foam Ni matrix. The data of EIS also suggested the charge transfer of the new composite electrode decreased compared to Pd/PPy/foam-Ni and PPy/foam-Ni composite electrodes. The effect of the electropolymerization potential on Pd/PPy-rGO/foam-Ni electrode for removing triclosan (TCS) was examined. It was found that the removal efficiency of TCS on the composite electrode could reach 100% at electropolymerization potential of 0.7 V and reaction time of 100 min.  相似文献   

4.
The adsorption of Immunoglobulin G on a titanium dioxide (TiO(2)) electrode surface was investigated using (125)I radiolabeling and electrochemical impedance spectroscopy (EIS). (125)I radiolabeling was used to determine the extent of protein adsorption, while EIS was used to ascertain the effect of the adsorbed protein layer on the electrode double layer capacitance and electron transfer between the TiO(2) electrode and the electrolyte. The adsorbed amounts of Ig.G agreed well with previous results and showed approximately monolayer coverage. The amount of adsorbed protein increased when a positive potential was applied to the electrode, while the application of a negative potential resulted in a decrease. Exposure to solutions of Ig.G resulted in a decrease of the double layer capacitance (C) and an increase in the charge-transfer resistance (R(2)) at the electrode solution interface. As more Ig.G adsorbed onto the electrode surface, the extent of C and R(2) variation increased. These capacitance and charge-transfer resistance variations were attributed to the formation of a proteinaceous layer on the electrode surface during exposure.  相似文献   

5.
王伟  李娟  白茹  韩珍  冯雪薇  孙越 《应用化学》2020,37(5):595-603
在金电极表面,用无金属可见光诱导原子转移自由基聚合(MVL ATRP)的方法制备聚丙烯酰胺@氧化石墨烯/纳米钯复合物修饰电极(Au/PAM@GO/Pd)。采用电化学循环伏安法(CV)、交流阻抗法(EIS)、扫描电子显微镜(SEM)、能量色散X射线光谱法(EDS)对Au/PAM@GO/Pd电极进行表征,结果表明在金电极表面成功制备了复合物。利用Au/PAM@GO/Pd电极作为电化学传感器,该传感器能成功地检测溶液中的乙醇。在最佳条件下,利用差分脉冲伏安法(DPV)该传感器检测乙醇的线性范围为1.0×10-8~1.0 mol/L,检出限(S/N=3)为1.3×10-9 mol/L,线性相关系数为0.996。  相似文献   

6.
《印度化学会志》2023,100(2):100876
The direct ethanol fuel cell is a green and renewable power source alternative to fossil fuels and produces less emissions compared to a combustion engine. Ethanol can be generated in great quantity from renewable resources like biomass through a fermentation process. Bio-generated ethanol is thus attractive fuel since growing crops for biofuels absorbs much of the carbon dioxide emitted into the atmosphere from the oxidation of ethanol. The platinum and palladium were co-deposited on graphite substrate by the galvanostatic technique and employed as anode catalyst for ethanol electrooxidation. The information on surface morphology, structural characteristics and bulk composition of the catalyst was obtained using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) spectroscopy. The cyclic voltammetry (CV) were used for the estimation of the electrochemically active surface area (ECSA) of the synthesized catalysts in alkaline medium. The CVs for ethanol oxidation revealed superior catalytic activity of Pt–Pd/C compared to Pd/C and Pt/C. The effect of OH? on ethanol oxidation at Pt–Pd/C catalyst was studied using cyclic voltammetry, quasisteady-state polarization, chronoamperometry, and electrochemical impedance spectroscopy (EIS). The Pt–Pd/C catalyst shows good stability and enhanced electrocatalytic activity is ascribed to the synergistic effect of higher electrochemical surface area, preferred OH? adsorption on the surface and palladium ad-atom contribution on the alloyed surface.  相似文献   

7.
运用电化学循环伏安 ,石英晶体微天平 (EQCM )和原位FTIR反射光谱等方法研究了酸性介质中乙醇在碳载纳米Pt膜电极上吸附和氧化行为 .结果表明 ,乙醇的电氧化与溶液酸碱性及电极表面氧物种有密切的关系 ,并指出乙醇电催化氧化是通过解离吸附产物和反应中间体双途径机理进行的 .在实验条件下 ,经原位FTIR反射光谱检测 ,解离吸附产物为CO ,反应中间体主要有CH3COOH和CH3CHO等物种 .  相似文献   

8.
The adsorption and release behavior of single-stranded DNA-wrapped single-walled carbon nanotubes (ssDNA-w-SWCNTs) on alkylthiol self-assembled monolayer (SAM) surface was systematically characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Fast electron transfer between bare Au electrode and redox species blocked by the alkylthiol SAM can be restored by SWCNTs or ssDNA-w-SWCNTs. The release of ssDNA-w-SWCNTs is carried out by positive or negative desorption potential. SWCNTs/SAM or ssDNA-w-SWCNTs/SAM is completely removed from Au surface at +0.90 V or -1.40 V (vs. 3.0 M KCl|Ag|AgCl). The controlled release of SWCNTs/SAM and ssDNA-w-SWCNTs/SAM holds great promise for gene delivering.  相似文献   

9.
Influence of rhodium addition to platinum on the activity of the alloy in methanol electrooxidation has been studied using Pt–Rh/Au limited volume electrodes with various surface compositions including the pure Pt and Rh metals. Electrochemical impedance spectroscopy (EIS) was used in the study. In the case of the Pt–Rh alloy, the impedance picture of methanol oxidation is qualitatively the same as for the pure Pt electrode. However, impedance spectra strongly depend on alloy composition. Equivalent circuits suitable for methanol oxidation on Pt were also used in the case of Pt–Rh and similar fitting results were obtained. A reaction mechanism suggested in the literature for Pt, which involves two strongly adsorbed intermediates competing for the same adsorption sites, is likely also for the Pt–Rh alloys. However, fittings with a corresponding impedance model were unsuccessful for both Pt and Pt–Rh because of mathematical caveats, such that quantitative comparisons were not possible. Nevertheless, EIS results suggest that Rh inhibits the kinetics of formation of reactive oxygen species at the surface of the alloy.  相似文献   

10.
孙新阳  周德璧  吕董  谭龙辉  赵伟利 《应用化学》2010,27(12):1424-1429
采用化学氧化聚合法合成了以碳为载体的钴-聚噻吩复合物(Co-PTh/C)作为气体扩散电极氧还原催化剂。 通过扫描电子显微镜-能量色散X射线能谱(SEM-EDX)、透射电子显微镜(TEM)等测试技术对催化剂进行表征。 结果表明,Co-PTh/C催化剂颗粒的粒径为10~30 nm,且分布均匀。 利用极化曲线、交流阻抗等电化学方法测试了其在碱性介质中(6 mol/L KOH)对氧还原的催化性能。 此催化剂在碱性介质中空气气氛条件下,电极电位在-0.20 V(vs.Hg/HgO)时电流密度达到0.152 A/cm2,催化性能高于质量分数5%Pt/C,显示出优越的氧还原电催化性能。 采取催化层/集流体/扩散层的排布方式,以纯锌为负极,6 mol/L的KOH为电解液,将气体扩散电极与锌负极组装成锌-空气电池。 电池以0.075 A/cm2进行恒流放电,放电电压为1.1 V且性能稳定。  相似文献   

11.
The support materials play a critical role for the electrocatalytic oxidation of ethanol on precious metal catalysts in fuel cells. Here, we report the poly(3,4-ethylenedioxythiophene) combined with reduced graphene oxide (PEDOT-RGO) as the support of Pd nanoparticles (NPs) for ethanol electrooxidation in alkaline medium. The as-prepared Pd/PEDOT-RGO composite catalysts are characterized by Raman spectrometer, X-ray diffraction, transmission electron microcopy, and scanning electron microcopy. PEDOT-RGO composite with the porous structure facilitates the dispersion of Pd NPs with a smaller size leading to the increase of electrochemical active surface area. The electrochemical properties and electrocatalytic activities of Pd/PEDOT-RGO hybrid are evaluated by cyclic voltammetry, chronoamperometry, CO stripping voltammetry, electrochemical impedance spectroscopy (EIS) and Tafel analysis. The results suggest that Pd/PEDOT-RGO hybrid shows a higher electrocatalytic activity, a better long-term stability, and the poisoning tolerance for the ethanol electrooxidation than Pd on carbon black. EIS and Tafel analysis indicate that PEDOT-RGO improves the kinetics of ethanol electrooxidation on the Pd NPs and is an efficient support in fuel cells.  相似文献   

12.
The preparation of a persistently stable and sensitive biosensor is highly important for practical applications. To improve the stability and sensitivity of glutamate sensors, an electrode modified with glutamate dehydrogenase (GDH)/Ni–Pd/core–shell nanoparticles was developed using the thermal polymerization of acrylamide (AM) to immobilize the synthesized Ni–Pd/core–shell nanoparticles onto a glassy carbon electrode (GCE). The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Electrochemical data showed that the prepared biosensor had remarkably enhanced electrocatalytic activity toward glutamate. Moreover, superior reproducibility and excellent stability were observed (relative average deviation was 2.96% after continuous use of the same sensor for 60 times, and current responses remained at 94.85% of the initial value after 60 d). The sensor also demonstrated highly sensitive amperometric detection of glutamate with a low limit of detection (0.052 μM, S/N = 3), high sensitivity (4.768 μA μM−1 cm−2), and a wide, useful linear range (0.1–500 μM). No interference from potential interfering species such as l-cysteine, ascorbic acid, and l-aspartate were noted. The determination of glutamate levels in actual samples achieved good recovery percentages.  相似文献   

13.
贮氢电极电化学阻抗谱及其数学模型   总被引:2,自引:0,他引:2  
从分析贮氢电极的放电过程着手,建立了具有明显物理意义贮氢电极电化学阻抗谱的数学模型,以该数学模型为基础,讨论了与电极材料性质和电极荷电状态相联系的一些参数。  相似文献   

14.
Here, Pd Ru nanoparticle networks(NPNs) with various compositions were synthesized through an inexpensive method in water as a green solvent, at different ratios of the H_2PdCl_4 and RuCl_3 precursors. This is a fast, room temperature and surfactant free strategy which is able to form high surface area metal nanosponges with a three-dimensional(3D) porous structure. The structure of as-prepared nanosponges was characterized using the techniques of field emission scanning electron microscopy(FESEM), energy dispersive spectroscopy(EDS) and cyclic voltammetry(CV). Then, the electrocatalytic activities of Pd Ru NPNs towards formic acid oxidation were examined by electrochemical measurements including CV,chronoamperometry, and electrochemical impedance spectroscopy(EIS). Based on studies, it was found that the current density of formic acid oxidation(FAO) is strongly dependent on the composition of Pd Ru NPNs. The best performance was realized for Pd_4Ru_1 NPNs compared to monometallic Pd counterpart and other bimetallic NPNs which might be ascribed to the role of Ru in the decrease of CO adsorption strength on the catalyst and consequently the priority of formic acid oxidation through the direct pathway. The Pd_4Ru_1 NPNs also showed the maximum current density and stability in chronoamperometric measurements. In addition, comparative studies were performed between as-prepared NPNs and CNTs-supported Pd nanoparticles(Pd NPs/CNTs). The present results demonstrated the unique structural advantages of NPNs compared to individual Pd NPs supported on the CNT which leads to the promising performance of NPNs as supportless catalysts for the oxidation of formic acid.  相似文献   

15.
A Co3O4 nanorod supported Pd electro-catalyst for the methanol electro-oxidation(MEO) has been fabricated by the combination of hydrothermal synthesis and microwave-assisted polyol reduction processes. The crystallographic property and microstructure have been characterized using XRD, SEM and TEM. The results demonstrate that Pd nanoparticles(Pd NPs) with a narrow particle size distribution(3-5 nm) are uniformly deposited onto the surface of Co3O4 nanorods. Electrochemical measurements show that this catalyst having a larger electrochemically active surface area and a more negative onset-potential exhibits enhanced catalytic activity of 504 m A/mg Pd for MEO comparing with the Pd/C catalyst(448 m A/mg Pd). The dependency of log I against logv reveals that MEO on Pd-Co3O4 electrode is under a diffusion control.Electrochemical impedance spectroscopy(EIS) measurement agrees well with the CV results. The minimum charge transfer resistance of MEO on Pd-Co3O4 is observed at-0.05 V, which coincides with the potential of MEO peak.  相似文献   

16.
An electrochemical impedance immunosensor has been developed for the specific detection of immunological interaction between human mammary tumor associated glycoprotein and its monoclonal antibody (GP1D8). Antibody proteins were immobilized by spontaneous adsorption of antibody on gold. Consequently, electrochemical impedance spectroscopy (EIS) measurements of a gold electrode coated with the antibody showed changes in a.c. current response after the addition of the specific antigen. The successful immunological reaction between the immobilized antibody–antigen at the electrode surface could be monitored.  相似文献   

17.
A Co3 O4 nanorod supported Pd electro-catalyst for the methanol electro-oxidation (MEO) has been fabricated by the combination of hydrother-mal synthesis and microwave-assisted polyol reduction process...  相似文献   

18.
The interaction of the ethyl xanthate (EX) anion with a copper electrode in a borate buffer solution, pH 9.2, has been investigated by cyclic voltammetry (CV), electrochemical quartz crystal microbalance (EQCM), electrochemical impedance spectroscopy (EIS), and measurements of contact angle (CA) under controlled potential. The results obtained allow establishing that, in the potential range from -0.80 and -0.60 V, two parallel reactions were characterized. These reactions were the ethyl xanthate electroadsorption and the hydrogen evolution reaction (HER). This last reaction has not been described by previous authors. Besides, the EIS measurements show that the mechanism of the HER on copper electrodes is not affected by the presence of a ethyl xanthate species. The EQCM study shows that in the electrodesorption process the departure of each ethyl xanthate species from the copper electrode is accompanied with the simultaneous entry of four to five water molecules. This fact is in accordance with the number of copper atoms involved in the adsorption of one ethyl xanthate species.  相似文献   

19.
The electrochemical behaviors of formaldehyde (FA) at boron‐doped diamond (BDD) electrodes are investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear scanning voltammetry (LSV) techniques. The CV results show that the oxidation reaction of FA is influenced by the hydroxyl concentration in the solution, and the peak current response with the FA concentration is linear at the range from 10 to 100 mM. The differential capacitance from EIS results indicate that the FA molecules adsorb at the BDD electrode surface at low potential (from 1.0 to 1.4 V). The kinetic studies have been examined with the various concentrations of FA, pH, and temperature. The activation energy of FA oxidation is also calculated. The results of kinetic study indicate that the adsorption of FA molecules at the BDD electrode is the rate‐determining step at low potential (from 1.0 to 1.40 V).  相似文献   

20.
We investigate the transpassivity of super-austenitic stainless steel UNS N08367 in 2.5 M LiCl solution by using cyclic potentiodynamic polarization (CPP), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). The CPP curve exhibits negative hysteresis, which indicates a transpassive dissolution process instead of pitting corrosion. The transition from the passive region to the transpassive region is characterized by EIS and equivalent circuit analysis. During the transpassive dissolution of the N08367 alloy, two reactions of adsorbed intermediates are dominant, as indicated by the two inductive loops at the transpassive region. The first inductive loop is associated with the faster reaction, i.e., the adsorption of Fe intermediates. This fast reaction is significantly influenced by the preferential dissolution of Fe during the transpassive dissolution. The second inductive loop is correlated with the adsorption of the Cr intermediate. In contrast to Fe, the Cr content on the surface increases in the transpassive region compared with the content in the passive region. The XPS spectra support the time and frequency domain approach for the preferential dissolution, and the dominant species resulted from the interfacial processes at the transpassive region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号