首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bimolecular single collision reaction potential energy surface of CN radical with ketene (CH2CO) was investigated by means of B3LYP and QCISD(T) methods. The calculated results indicate that there are three possible channels in the reaction. The first is an attack reaction by the carbon atom of CN at the carbon atom of the methylene of CH2CO to form the intermediate NCCH2CO followed by a rupture reaction of the C-C bond combined with -CO group to the products CH2CN CO. The second is a direct addition reaction between CN and CH2CO to form the intermediate CH2C(O)CN followed by its isomerization into NCCH2CO via a CN-shift reaction, and subsequently, NCCH2CO dissociates into CH2CN CO through a CO-loss reaction. The last is a direct hydrogen abstraction reaction of CH2CO by CN radical. Because of the existence of a 15.44 kJ/mol reaction barrier and higher energy of reaction products, the path can be ruled out as an important channel in the reaction kinetics. The present theoretical computation results, which give an available suggestion on the reaction mechanism, are in good agreement with previous experimental studies.  相似文献   

2.
The reaction mechanisms of phenol with formaldehyde in the first and second addition at the ortho- and para-position in acid solution were theoretically investigated at the PW91/DNP level with solvent effects included. The reaction of phenol with protonated methanediol firstly forms an adduct intermediate, via a SN2 mechanism with a water molecule as the leaving group. From the adduct intermediate, there are two reaction channels involving a proton transfer to form the addition products. One is that a proton directly transfers via a four-membered ring transition state with a notable energy barrier (Four-member mechanism). Another mechanism involving a water molecule as catalyst to mediate the proton transfer (WCP mechanism), is a barrierless process, indicating that the formation of the adduct intermediate, the first reaction step, is rate-limiting. The reaction products are free hydroxymethyl phenols and/or hydroxybenzy carbocation (HOC6H4CH2+) which plays an important role in the following formation of methylene and methylene ether linkages. The second addition reactions between formaldehyde and hydroxymethyl phenol at all possible reaction sites of the phenol ring in acid solution were also investigated and discussed.  相似文献   

3.
Reactions between CH_4 and CO_2 under the action of continuous microwave discharge at atmospheric pressure were studied in a special homemade reactor. The main products were CO and H2, while acetylene and ethylene were also found in the products. Experimental results show that conversions of CH4 and CO2 could be higher than 90% without the presence of any catalyst. Effects of CO2/CH4 molar ratio and total flow rate of the feed gas on the reaction were also investigated.  相似文献   

4.
A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selective catalytic oxidation with oxygen over La-supported MgO catalyst. The second bed, comprising of the HZSM-5 zeolite catalyst, is used for the oligomerization of OCM light hydrocarbon products to liquid hydrocarbons. The effects of temperature (650-800℃), methane to oxygen ratio (4 10), and SiO2/Al2O3 ratio of the HZSM-5 zeolite catalyst on the process are studied. At higher reaction temperatures, there is considerable dealumination of HZSM-5, and thus its catalytic performance is reduced. The acidity of HZSM-5 in the second bed is responsible for the oligomerization reaction that leads to the formation of liquid hydrocarbons. The activities of the oligomerization sites were unequivocally affected by the SiO2/Al2O3 ratio. The relation between the acidity and the activity of HZSM-5 is studied by means of TPD-NH:j techniques. The rise in oxygen concentration is not beneficial for the C5 selectivity, where the combustion reaction of intermediate hydrocarbon products that leads to the formation of carbon oxide (CO CO2) products is more dominant than the oligomerization reaction. The dual-bed catalytie system is highly potential for directly converting methane to liquid fuels.  相似文献   

5.
The bimolecular single collision reaction potential energy surface of an isocyanate NCO radical with a ketene CH2CO molecule was investigated by means of B3LYP and QCISD(T) methods. The computed results indicate that two possible reaction channels exist on the surface. One is an addition-elimination reaction process, in which the CH2CO molecule is attacked by the nitrogen atom at its methylene carbon atom to lead to the formation of the intermediate OCNCH2CO followed by a C-C rupture channel to the products CH2NCO+CO. The other is a direct hydrogen abstraction channel from CHzCO by the NCO radical to afford the products HCCO+HNCO. Because of a higher barrier in the hydrogen abstraction reaction than in the addition-elimination reaction, the direct hydrogen abstraction pathway can only be considered as a secondary reaction channel in the reaction kinetics of NCO+ CH2CO. The predicted results are in good agreement with previous experimental and theoretical investigations.  相似文献   

6.
The reaction of zinc oxide with methane in the absence and presence of CO2 were theoretically and experimentally investigated using HSC Chemistry 5.1 software and a fixed bed reactor, respectively. In the absence of CO2 at 1193 K, the reduction of ZnO was accompanied with methane cracking, and metallic zinc, CO, and H2 were the main reaction products. This system could be utilized for the co-production of metallic zinc and synthesis gas, in which ZnO was a donor of oxygen. In the presence of CO2, ZnO plays as a catalyst in the CO2 reforming of methane and produces syngas with the average H2/CO ratio of 0.88 at 1193 K, which was close to the total reaction theoretic value of 1. It was also found that higher temperature favored high CH4 and CO2 conversions. XRD technique was used to characterize the ZnO species. The result showed that there were no differences in the peak profiles of the XRD patterns of the ZnO powder obtained before and after passing the CH4/CO2 mixed gases for 6 h at 1193 K. It is suggested that ZnO functions as a catalyst according to the redox cycle and metallic zinc plays the role of intermediate product in this process.  相似文献   

7.
The reaction of O(~3P) with CH_2Cl radical has been studied using ab initio molecular orbital theory. G2 (MP2) method is used to calculate the geometrical parameters, vibrational frequencies and energies of various stationary points on the potential energy surface. The reaction mechanism is revealed. The addition of O(~3P) with CH_2Cl leads to the formation of an energy rich intermediate OCH_2Cl which can subsequently undergo decomposition or isomerization to the final products. The calculated heat of reaction for each channel is in agreement with the experimental value. The production of H CHClO and Cl CH_2O are predicted to be the major channels. The overall rate constants are calculated using transition state theory on the basis of ab initio data. The rate constant is pressure independent and exhibits negative temperature dependence at lower temperatures, in accordance with the experimental results.  相似文献   

8.
A comparative kinetic analysis of the title reaction over the LC andSLC catalysts is reported.It shows that there are obvious differences in the ap-parent reaction activation energies,apparent reaction orders and the pathwayfor the formation of CO_x between the LC and SLC catalysts.The apparent acti-vation energies for CH_4 conversion and C_2,CO_x production over the LC catalystare higher than those over the SLC catalyst,while preexponential factors forthe CH_4 conversion and C_2,CO_x production are in reverse order.The ratio ofk_(C_2)/k_(CH_4) over the SLC is larger than that over the LC.In contrast,the ratio ofk_(CO_x)/k_(CH_4) over the SLC is smaller than that over the LC.This suggests that therole of the SrO additive is suppression of the total oxidation of methane and re-sults in a higher C_2selectivity.The apparent orders of CH_4 and O_2are about onein CH_4 conversion over the LC catalyst while the CH_4 conversion is about secondoder reaction with respect to CH_4 adn about first order reaction with  相似文献   

9.
Combination of partial oxidation of methane (POM) with carbon dioxide reforming of methane (CRM) has been studied over Ru-based catalysts at 550℃.POM,CRM and combined reaction were performed over 8wt%Ru/γ-Al2O 3 and the results show that both POM and CRM contribute to the combined reaction,between which POM plays a more important role.Moreover,the addition of Ce to Ru-based catalyst results in an improvement in the activity and CO selectivity under the adopted reaction conditions.The Ce-doped catalyst was characterized by N2 adsorption-desorption,SEM,XRD,TPR,XPS and in situ DRIFTS.The mechanism has been studied by in situ DRIFTS together with the temperature distribution of catalyst bed.The mechanism of the combined reaction is more complicated and it is the combination of POM and CRM mechanisms in nature.The present paper provides a new catalytic system to activate CH4 and CO2 at a rather low temperature.  相似文献   

10.
Combination of partial oxidation of methane (POM) with carbon dioxide reforming of methane (CRM) has been studied over Ru-based catalysts at 550 ℃. POM, CRM and combined reaction were performed over 8wt%Ru/γ-Al2O3 and the results show that both POM and CRM contribute to the combined reaction, between which POM plays a more important role. Moreover, the addition of Ce to Ru-based catalyst results in an improvement in the activity and CO selectivity under the adopted reaction conditions. The Ce-doped catalyst was characterized by N2 adsorption-desorption, SEM, XRD, TPR, XPS and in situ DRIFTS. The mechanism has been studied by in situ DRIFTS together with the temperature distribution of catalyst bed. The mechanism of the combined reaction is more complicated and it is the combination of POM and CRM mechanisms in nature. The present paper provides a new catalytic system to activate CH4 and CO2 at a rather low temperature.  相似文献   

11.
It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/Al2O3 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.  相似文献   

12.
Chiral β-amino alcohols are important building blocks for the synthesis of drugs, natural products, chiral auxiliaries, chiral ligands and chiral organocatalysts. The catalytic asymmetric β-amination of alcohols offers a direct strategy to access this class of molecules. Herein, we report a general intramolecular C(sp3)–H nitrene insertion method for the synthesis of chiral oxazolidin-2-ones as precursors of chiral β-amino alcohols. Specifically, the ring-closing C(sp3)–H amination of N-benzoyloxycarbamates with 2 mol% of a chiral ruthenium catalyst provides cyclic carbamates in up to 99% yield and with up to 99% ee.The method is applicable to benzylic, allylic, and propargylic C–H bonds and can even be applied to completely non-activated C(sp3)–H bonds, although with somewhat reduced yields and stereoselectivities. The obtained cyclic carbamates can subsequently be hydrolyzed to obtain chiral β-amino alcohols. The method is very practical as the catalyst can be easily synthesized on a gram scale and can be recycled after the reaction for further use. The synthetic value of the new method is demonstrated with the asymmetric synthesis of a chiral oxazolidin-2-one as intermediate for the synthesis of the natural product aurantioclavine and chiral β-amino alcohols that are intermediates for the synthesis of chiral amino acids, indane-derived chiral Box-ligands, and the natural products dihydrohamacanthin A and dragmacidin A.  相似文献   

13.
In the current study,the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated.The study includes both purely catalytic operation in the temperature range of 923-1023K,and hybrid catalytic-plasma operation of DC corona discharge reactor at room temperature and ambient pressure.The effect of feed flow rate,discharge power and Ni/γ-Al2O3 catalysts are studied.When CH4/CO2 ratio in the feed is 1/2,the syngas of low H2/CO ratio at about 0.56 is obtained,which is a potential feedstock for synthesis of liquid hydrocarbons.Although Ni catalyst is only active above 573K,presence of Ni catalysts in the cold corona plasma reactor(T≤523K) shows promising increase in the conversions of methane and carbon dioxide.When Ni catalysts are used in the plasma reaction,H2/CO ratios in the products are slightly modified,selectivity to CO increases whereas fewer by-products such as hydrocarbons and oxygenates are formed.  相似文献   

14.
The aim of the present study is to explore the coherence of thermodynamic equilibrium predictions with the actual catalytic reaction of CH4 with N_2O,particularly at higher CH4 conversions.For this purpose,key process variables,such as temperature(300℃-550℃) and a molar feed ratio(N_2O/CH4 = 1,3,and 5),were altered to establish the conditions for maximized H_2 yield.The experimental study was conducted over the Co-ZSM-5 catalyst in a fixed bed tubular reactor and then compared with the thermodynamic equilibrium compositions,where the equilibrium composition was calculated via total Gibbs free energy minimization method.The results suggest that molar feed ratio plays an important role in the overall reaction products distribution.Generally for N_2O conversions,and irrespective of N_2O/CH_4 feed ratio,the thermodynamic predictions coincide with experimental data obtained at approximately 475℃-550℃,indicating that the reactions are kinetically limited at lower range of temperatures.For example,theoretical calculations show that the H2 yield is zero in presence of excess N2O(N_2O/CH_4 = 5).However over a Co-ZSM-5 catalyst,and with a same molar feed ratio(N_2O/CH_4) of 5,the H_2 yield is initially 10%at 425℃,while above450℃ it drops to zero.Furthermore,H_2 yield steadily increases with temperature and with the level of CH4 conversion for reactions limited by N_2O concentration in a reactant feed.The maximum attainable(from thermodynamic calculations and at a feed ratio of N_2O/CH4=3) H_2 yield at 550℃ is 38%,whereas at same temperature and over Co-ZSM-5,the experimentally observed yield is about 19%.Carbon deposition on Co-ZSM-5 at lower temperatures and CH4 conversion(less than 50%) was also observed.At higher temperatures and levels of CH_4 conversion(above 90%),the deposited carbon is suggested to react with N_2O to form CO_2.  相似文献   

15.
The basic problem in homogeneous catalysis is the separation of catalyst from the reaction mixtures. To overcome this drawback, a number of methods have been developed. One of them is to attach homogeneous catalyst to supports 1. An alternative and well used approach involves liquid/liquid biphasic catalysis in which the catalyst and product reside in different phases and separation of the products is achieved simply by phase separation2. Recently, a concept of thermoregulated phase transf…  相似文献   

16.
The catalytic performance of Ni-containing limonite ore in the dry reforming reaction of methane(CH_4+CO_2→2H_2+2CO)was determined before and after hydrogen reduction,and under a flow of hydrogen.After hydrogen reduction,the limonite ore exhibited higher catalytic performance,because of the formation of Fe–Ni.However,the Fe in Fe–Ni was readily oxidized by the input CO_2gas,resulting in a rapid decrease in the catalytic performance of limonite ore.The performance decrease was due to a decrease in the Ni surface area;Ni could not dissolve in iron oxides and this caused segregation in the iron oxides.When the reaction was conducted under a hydrogen flow,the Fe–Ni was formed and maintained.Ni was highly dispersed in the Fe–Ni phase,resulting in greater surface area of Ni and higher conversion rate of CH_4and CO_2.The catalytic performance of the limonite ore was inferior to the Ni/Al_2O_3catalyst because the effect of catalyst support was small,however,the limonite ore was more stable during catalytic use and much cheaper than the Ni/Al_2O_3.  相似文献   

17.
The influence of reaction pressure, temperature, space velocity (GHSV), particle size of catalyst and H2/CO ratio of feed-gas on the steady-state product distribution, conversion of CO, H2 and syngas, olefin to paraffin ratio and CO2/ H2O ratio for FTS reaction were investigated using a coprecipitated copper- potassium promoted iron catalyst. The test was carried out in a fixed-bed reactor. Increasing the reaction temperature from 493. 2 to 5-13. 2 K shifted the hydrocarbon distribution toward the heavier hydrocarbons (C5-C23) and selectively increased CO conversion to CO2. The hydrocarbon distribution was found to be dependent on the H2/CO feed-gas ratio in the range from 1.23 to 2. 22. The CO2/H2O ratio in product decreased as the flow of feed-gas rate increased, which suggests that H2O is a primary product and its reaction with CO to form CO2 occurs via a secondary process. The CO conversion increased with the decrease of catalyst particle size from 10 to 60 mesh (2. 0- 0. 3 mm), while the CO convers  相似文献   

18.
This study investigates the effects of addition of oxygen on the oxidative dehydrogenation (ODH) of methanol when a fluorotetrasilicic mica ion-exchanged with palladium (Pd2 -TSM) was used as the catalyst. The reaction proceeded at a very low temperature in the presence of oxygen, and HCOOCH3 was obtained at high selectivity. By calculating the equilibrium conversion, it has been shown that substantial ODH took place for HCOOCH3 production. Consequently, this reaction would make dehydrogenation the dominant reaction at equilibrium. Not all the H dissociated from CH3OH was converted to H2O by oxidation. It has been shown that the H2O was not produced from oxidative dehydrogenation by the direct reaction of CH3OH and O2 when an attempt was made to carry out oxidative dehydrogenation using an isotope oxygen trace method in the gas phase. Therefore, when CH3OH was converted to CO2 and dehydrogenated to HCOOCH3, the C—O bonds were not dissociated.  相似文献   

19.
The possibility of synthesizing acetic acid from CH4 and CO2 in the presence of O2 over a V2O5-PdCl2/Al2O3 catalyst has been explored. The result shows that it is feasible in catalyzing a direct conversion of CH4, CO2 and O2 to acetic acid. It is concluded that both CO2 and O2 are involved in the formation of acetic acid.  相似文献   

20.
Wu  Rui  Chen  Kai  Ma  Jun  Yu  Zhi-Xiang  Zhu  Shifa 《中国科学:化学(英文版)》2020,63(9):1230-1239
We report the first Rh_2(II)-catalyzed asymmetric cycloisomerization of activated enynes to provide cyclopropane-fused tetrahydropyridines in good yields and excellent enantioselectivities under mild conditions. The activated group, CHZ(Z is electronwithdrawing group(EWG)), in the enyne substrates exerts two synergetic roles, one is to activate alkyne for the cyclopropanation reaction; the other is to introduce the C–H···O interaction between substrate and catalyst(reducing the energy barrier of the reaction). This double-mode activation was supported by both density functional theory(DFT) calculations and experimental tests. This strategy was also extended to other CH_2 Z(Z can be OH, OMe, F) as activating groups that made the CH_2 more acidic so that the substrates could also form increased C–H···O interaction with the catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号