首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
PtRu nanoparticles supported on Vulcan XC-72 carbon and carbon nanotubes were prepared by a microwave-assisted polyol process. The catalysts were characterized by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). The PtRu nanoparticles, which were uniformly dispersed on carbon, were 2-6 nm in diameter. All PtRu/C catalysts prepared as such displayed the characteristic diffraction peaks of a Pt face-centered cubic structure, excepting that the 2theta values were shifted to slightly higher values. XPS analysis revealed that the catalysts contained mostly Pt(0) and Ru(0), with traces of Pt(II), Pt(IV), and Ru(IV). The electro-oxidation of methanol was studied by cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. It was found that both PtRu/C catalysts had high and more durable electrocatalytic activities for methanol oxidation than a comparative Pt/C catalyst. Preliminary data from a direct methanol fuel cell single stack test cell using the Vulcan-carbon-supported PtRu alloy as the anode catalyst showed high power density.  相似文献   

2.
甲醇电氧化催化剂Pt/CeO2-CNTs与PtRu/C的比较研究   总被引:1,自引:0,他引:1  
为认识合成催化剂Pt/CeO2-CNTs与商用催化剂PtRu/C(E-TEK)的催化性能和结构特点, 用CO溶出法和恒电位氧化法比较了这两种催化剂对CO的电氧化活性, 运用循环伏安法和恒电位氧化法比较了这两种催化剂对甲醇的电氧化活性. CO电氧化实验结果表明, PtRu/C上CO的电氧化活性明显优于Pt/CeO2-CNTs; 甲醇电氧化实验结果却表明, Pt/CeO2-CNTs与PtRu/C上甲醇电氧化表观活性相当. 为从结构特点上解释PtRu/C上CO电氧化和甲醇电氧化活性的不一致, 对PtRu/C进行了循环伏安扫描和CO溶出实验. 结果表明, PtRu/C的甲醇电氧化电流之所以没有预期高, 一是由于Pt比表面积不够大, 同时Pt-Ru之间协同作用有待提高. 本研究结果表明, 尽管Ru对Pt上CO电氧化有显著助催化作用, 但要充分发挥其对Pt上甲醇电氧化的助催化作用, 需同时提高Pt表面积和Pt-Ru接触界面. 该结论对设计甲醇电氧化催化剂具有普适意义.  相似文献   

3.
Carbon nanotubes-Nafion (CNTs-Nafion) composites were prepared by impregnated CNTs with Nafion in ethanol solution and characterized by FT-IR. Pt-Ru catalysts supported on CNTs-Nafion composites were synthesized by microwave-assisted polyol process. The physical and electrochemical properties of the catalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), CO stripping voltammetry, cyclic voltammetry (CV) and chronoamperometry (CA). The results showed that the Nafion incorporation in CNTs-Nafion composites did not significantly alter the oxygen-containing groups on the CNTs surface. The Pt-Ru catalyst supported on CNTs-Nafion composites with 2 wt% Nafion showed good dispersion and the best CO oxidation and methanol electro-oxidation activities.  相似文献   

4.
采用调变的多元醇法制备了高分散的Pt/C, PtRu/C和Ru/C电催化剂. XRD计算结果表明, PtRu/C电催化剂的平均粒径和合金度分别为2.2 nm和71%. 采用电化学方法和原位傅里叶变换红外反射光谱方法(in situ FTIRS)研究了甲醇在3种电催化剂上的吸附氧化过程, 发现PtRu/C对甲醇的催化活性明显高于Pt/C, Ru的加入一方面影响了甲醇在Pt上的解离吸附性能, 另一方面提供了Ru-OH物种, 从而抑制了低电位下电催化剂中毒. 红外光谱研究结果表明, 线性吸附态CO(COL)是主要毒化物种, 反应产物主要是CO2, 还有少量的甲酸甲酯. 根据实验结果讨论了甲醇在PtRu/C电催化剂上的氧化机理.  相似文献   

5.
采用化学还原浸渍法在两种不同条件下制备炭载PtRu催化剂,通过XRD和TEM技术对催化剂的晶体结构及微观形貌进行了分析,运用循环伏安法、线性扫描法来检测不同条件下制备的催化剂对甲醇及吸附态CO(COad)电催化氧化活性的影响.结果表明,不同条件下制备的催化剂Pt和Ru形成合金的程度不同,Pt-Ru合金原子的颗粒在载体炭上的粒径大小和分布不同,导致催化剂对甲醇及COad的电氧化催化活性不同.其中以甲醛为还原剂在乙二醇体系中制备的催化剂PtRu/C-2能形成较好的合金状态,粒径小,分布均匀,对甲醇及COad的氧化具有较高的电催化活性.  相似文献   

6.
采用水热法合成了PtRu/MWCNTs阳极催化剂,并以循环伏安、线性扫描、计时电流和交流阻抗等电化学测试研究了其对甲醇的电催化氧化,结果表明,水热合成的PtRu/MWCNTs较之同样条件下合成的PtRu/Vu lcan XC-72有更好的对甲醇氧化的催化活性和更强的抗毒化能力。  相似文献   

7.
报道了一种以微流控技术制备对甲醇具有高效电氧化催化活性的碳载PtRu催化剂(PtRu/C)的方法。 通过改变反应液在微流控反应器中的流速,得到了一系列纳米粒径分布在1.4~2.0 nm范围内的PtRu/C催化剂。 对这些催化剂进行电化学测试发现,当反应液以90 μL/min的流速流经微流控反应器时制得的催化剂具有最高催化活性。 进一步研究发现,这是由于在该流速制得的催化剂具有较大的电化学活性面积和较高含量的Pt(0)。 该种制备催化剂的方法在能源转化和环境领域有望被广泛使用。  相似文献   

8.
以NaBH4为还原剂,将K2PtCl6和AgNO3前体进行共还原制备了一系列具有不同组成的碳载PtmAg/C合金催化剂(m为Pt/Ag原子比,m为0.05~1.0),在酸性介质中考察了该系列催化剂对甲醇氧化反应的电催化性能。 与单组分Pt/C催化剂相比,系列PtmAg/C催化剂呈现出较高的催化氧化甲醇的活性与抗CO毒化能力,而且该催化剂的性能与其组成密切相关。 随m值增加,PtmAg/C催化剂对甲醇氧化反应的质量比催化活性(MSA)、本征催化活性(IA)与稳定性均逐步增加,当m=0.5时催化活性达到最高,其MSA和IA分别是Pt/C催化剂的5.1和4.8倍。  相似文献   

9.
The interaction of colloid-based, carbon supported Pt/C (40 wt%), PtRu/C (45 wt%) and Pt3Sn/C (24 wt%) catalysts with ethanol and their performance for ethanol electrooxidation were investigated in model studies by electrochemical, in situ infrared spectroscopy and on-line differential electrochemical mass spectrometry measurements. The combined application of in situ spectroscopic techniques on realistic catalysts and under realistic reaction (DEMS, IR) and transport conditions (DEMS) yields new insight on mechanistic details of the reaction on these catalysts under the above reaction and transport conditions. Based on these results, the addition of Sn or Ru, though beneficial for the overall activity for ethanol oxidation, does not enhance the activity for C-C bond breaking. Dissociative adsorption of ethanol to form CO2 is more facile on the Pt/C catalyst than on PtRu/C and Pt3Sn/C catalysts within the potential range of technical interests (<0.6 V), but Pt/C is rapidly blocked by an inhibiting CO adlayer. In all cases acetaldehyde and acetic acid are dominant products, CO2 formation contributes less than 2% to the total current. The higher ethanol oxidation current density on the Pt3Sn/C catalyst at these potentials results from higher yields of C2 products, not from an improved complete ethanol oxidation to CO2.  相似文献   

10.
High methanol electro-oxidation activity was obtained on novel PtRuFe/C (2:1:1 at.%) catalyst. Mass and specific activities were 5.67 A  g−1 catal. and 177 mA m−2 for the PtRuFe/C catalyst while those of the commercial PtRu/C catalyst were 2.28 A g−1 catal. and 87.7 mA m−2, respectively. CO stripping results showed that on-set voltage for CO electro-oxidation was lowered by incorporation of Fe. XRD and XPS results revealed that Fe2O3 was formed instead of Fe(0), which resulted in large electron deficiency in Pt and easy CO electro-oxidation. The electron deficiency of Pt was proved by XPS results of Pt4f peaks, which moved to higher binding energies in PtRuFe/C than PtRu/C.  相似文献   

11.
A carbon-supported PtRuNi nanocomposite is synthesized via a microwave-irradiated polyol plus annealing synthesis strategy. The catalyst is characterized by transmission electron microscopy, powder X-ray diffraction, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. The data are discussed with respect to those for the carbon-supported PtRu nanocomposite prepared following the same way. The characterizations show that the inclusion of Ni in the PtRu system has only a small effect on the particle size, the structure, and the compositional homogeneity. CO-stripping voltammetry and measurements on the single proton exchange membrane fuel cells show that the PtRuNi/C catalyst has an improved activity for CO(ads) electro-oxidation. An accelerated durability test on the catalyst exhibits insignificant loss of activity in acidic media. On the basis of the exploration of the structure-activity relationship, a mechanism for the improved performance of the catalyst is proposed. It is suggested that the improved CO-tolerant performance of the PtRuNi/C nanocomposite should be related to the hydrogen spillover on the catalyst surface, the enhanced oxidation of CO(ads) by nickel hydroxides, and the high proton and electronic conductivity of the hydroxides. The nickel hydroxide passivated surface and/or anchoring of metallic nickel in the platinum lattice may contribute to the durability of the catalyst in acid solution.  相似文献   

12.
A simple self-assembly approach has been developed to functionalize carbon nanotubes (CNTs) with chitosan (CS) and heteropolyacids (HPAs) of phosphomolybdic acid (H(3)PMo(12)O(40), HPMo) and phosphotungstic acid (H(3)PW(12)O(40), HPW). The non-covalent functionalization method, which introduces homogenous surface functional groups with no detrimental effect on graphene structures of CNTs, can be carried out at room temperature without the use of corrosive acids. The PtRu nanoparticles supported on HPAs-CS-CNTs have a uniform distribution and much smaller size as compared to those of the PtRu nanoparticles supported on conventional acid treated CNTs (PtRu/AO-CNTs). The onset and peak potentials for CO(ad) oxidation on PtRu/HPAs-CS-CNTs catalysts are more negative than those on PtRu/AO-CNTs, indicating that HPAs facilitate the electro-oxidation of CO. The PtRu/HPMo-CS-CNTs catalyst has a higher electrocatalytic activity for methanol oxidation and higher tolerance toward CO poisoning than PtRu/HPW-CS-CNTs. The better electrocatalytic enhancement of HPMo on the PtRu/HPAs-CS-CNTs catalyst is most likely related to the fact that molybdenum-containing HPAs such as HPMo have more labile terminal oxygen to provide additional active oxygen sites while accelerating the CO and methanol oxidation in a similar way to that of Ru in the PtRu binary alloy system.  相似文献   

13.
王美丽  桑林  黄成德 《电化学》2007,13(4):377-381
应用循环伏安,计时电流,计时电位和XRD等方法研究了碱性介质中甲醇在自制PdNiO/C和Pd/C催化剂上的电化学氧化以及高温热处理对催化剂结构和性能的影响.结果表明,还原温度为70℃,Pd、Ni原子比为8∶2时,PdNiO/C催化剂对甲醇电化学氧化具有较好的催化活性.热处理可增大催化剂粒径,升高结晶度,降低分散度和催化活性,并且可使NiO从Pd的晶格中脱离出来.与Pd/C催化剂相比,优选的PdNiO/C催化剂有更高的催化活性和更好的抗毒化能力.  相似文献   

14.
直接以Pt, Ru, W, Ni和Sn的金属盐为前驱体, 通过溶胶法制备了不同原子比的Pt-Ru-M/C(M=W, Ni, Sn)碳载纳米合金催化剂, 用X射线衍射(XRD)和X光电子能谱(XPS)表征催化剂的晶相结构、表面组成及价态形式, 采用循环伏安法测试催化剂电催化氧化甲醇活性. 结果表明, 掺杂Ni和W可明显提高Pt-Ru/C催化活性, 掺杂Sn则降低了Pt-Ru/C催化活性. 其中Pt5-Ru4-Ni0.7/C的活性最高, 在1.0 mol/L NaOH+1.0 mol/L CH3OH溶液中峰电流达835.2 mA/mg, 甲醇起始氧化电位比Pt5-Ru5/C低约0.11 V.  相似文献   

15.
Nanosized Pt, PtRu, and Ru particles were prepared by a novel process, the hydrosilylation reaction. The hydrosilylation reaction is an effective method of preparation not only for Pt particles but also for other metal colloids, such as Ru. Vulcan XC-72 was selected as catalyst support for Pt, PtRu, and Ru colloids, and TEM investigations showed nanoscale particles and narrow size distribution for both supported and unsupported metals. All Pt and Pt-rich catalysts showed the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Ru and Ru-rich alloys were more typical of a hexagonal close-packed (hcp) structure. As evidenced by XPS, most Pt and Ru atoms in the nanoparticles were zerovalent, except a trace of oxidation-state metals. The electrooxidation of liquid methanol on these catalysts was investigated at room temperature by cyclic voltammetry and chronoamperometry. The results concluded that some alloy catalysts showed higher catalytic activities and better CO tolerance than the Pt-only catalyst; Pt56Ru44/C have displayed the best electrocatalytic performance among all carbon-supported catalysts.  相似文献   

16.
本文基于NiO作为Pt催化甲醇助催化剂的思路,通过Pt纳米颗粒担载在NiO修饰的碳材料载体上制备了Pt/NiO-C催化剂,系统地研究了不同的NiO/C热处理温度对Pt粒径的影响,并重点探讨了Pt对NiO的质量比对催化氧化甲醇的影响。X射线衍射分析结果显示NiO和Pt均为立方晶系,且NiO的加入有利于主催化剂Pt形成较小的粒径,且经400℃热处理NiO修饰的C材料作为载体有利于Pt的有效分散。所获得的Pt/NiO-C催化剂的电化学活性在甲醇酸性溶液中通过循环伏安法(CV)和计时电流法(CA)进行性能测试。CV测试结果显示以Pt/NiO重量比为4∶1的催化剂其电氧化甲醇活性最大,其峰值氧化电流密度达806 mA/mgPt,是Pt/C催化剂的1.64倍。CA测试结果显示Pt/NiO-C比Pt/C具有更好的抗CO中毒性能和稳定性。  相似文献   

17.
Several compositions of Pt-WO3 catalysts were synthesized and characterized for the electro-oxidation of methanol and CO. The surface morphologies of the catalysts were found to be dependent on the composition. X-ray energy dispersive spectroscopy and X-ray photoelectron spectroscopy results suggest a surface enrichment of WO3 in the codeposited Pt-WO3 catalysts. Cyclic voltammetry and chronoamperometry in methanol show an improvement in catalytic activity for the Pt-WO3 catalysts. A significant improvement in the poison tolerance toward CO and other organic intermediates was observed in the mixed metal-metal oxide catalyst. The catalytic performance of the different compositions was directly compared by normalization of the current to active sites. CO-stripping voltammetry suggests the involvement of WO3 in the catalytic process as opposed to a mere physical effect as suggested by previous work. A possible mechanism for this improvement is proposed based on the electrochemical data.  相似文献   

18.
The ability to alter the surface population of metal sites in bimetallic nanoparticles (NPs) is of great interest in the context of heterogeneous catalysis. Here, we report findings of surface alterations of Pt and Ru metallic sites in bimetallic carbon-supported (PtRu/C) NPs that were induced by employing a controlled thermal-treatment strategy. The thermal-treatment procedure was designed in such a way that the particle size of the initial NPs was not altered and only the surface population of Pt and Ru was changed, thus allowing us to deduce structural information independent of particle-size effects. X-ray absorption spectroscopy (XAS) was utilized to deduce the structural parameters that can provide information on atomic distribution and/or extent of alloying as well as the surface population of Pt and Ru in PtRu/C NPs. The PtRu/C catalyst sample was obtained from Johnson Matthey, and first the as-received catalyst was reduced in 2 % H2 and 98 % Ar gas mixture at 300 degrees C for 4 h (PtRu/C as-reduced). Later this sample was subjected to thermal treatment in either oxygen (PtRu/C-O2-300) or hydrogen (PtRu/C-H2-350). The XAS results reveal that when the as-reduced PtRu/C catalyst was exposed to the O2 thermal-treatment strategy, a considerable amount of Ru was moved to the catalyst surface. In contrast, the H2 thermal-treatment strategy led to a higher population of Pt on the PtRu/C surface. Characterization of the heat-treated PtRu/C samples by X-ray diffraction and transmission electron microscopy reveals that there is no significant change in the particle size of thermally treated samples when compared to the as-received PtRu/C sample. The electrochemical properties of the as-reduced and heat-treated PtRu/C catalyst samples were confirmed by cyclic voltammetry, CO-adsorption stripping voltammetry, and linear sweep voltammetry. Both XAS and electrochemical investigations concluded that the PtRu/C-H2-350 sample exhibits significant enhancement in reactivity toward methanol oxidation as a result of the increased surface population of the Pt when compared to the PtRu/C-O2-300 and PtRu/C as-reduced samples.  相似文献   

19.
High surface area carbon supported Pt and Pt3Sn catalysts were synthesized by microwave irradiation and investigated in the ethanol electro-oxidation reaction. The catalysts were obtained using a modified polyol method in an ethylene glycol solution and were characterized in terms of structure, morphology and composition by employing XRD, STM and EDX techniques. The diffraction peaks of Pt3Sn/C catalyst in XRD patterns are shifted to lower 2θ values with respect to the corresponding peaks at Pt/C catalyst as a consequence of alloy formation between Pt and Sn. Particle size analysis from STM and XRD shows that Pt and Pt3Sn clusters are of a small diameter (∼2 nm) with a narrow size distribution. Pt3Sn/C catalyst is highly active in ethanol oxidation with the onset potential shifted for ∼150 mV to more negative values and with ∼2 times higher currents in comparison to Pt/C.  相似文献   

20.
制备方法对PtMo/C催化剂上CO电催化氧化性能的影响   总被引:3,自引:0,他引:3  
李莉  徐柏庆 《物理化学学报》2005,21(10):1132-1137
用化学还原法、胶体法和Adams法制备了PtMo/C电催化剂, 对其物理化学性质及其在CO电氧化反应中的催化性能进行了对比研究. TEM和XRD测试结果表明, 胶体法制备的催化剂颗粒在载体炭上均匀分布, 颗粒粒径约5 nm;由化学还原法制备的颗粒尺寸较大, 而Adams法制备的颗粒尺寸达数十纳米, 并有严重的团聚现象. CO消除伏安法测试结果表明, 三种制备方法中胶体法制备的PtMo/C催化剂具有最高的电化学表面积和电催化活性. 与常用的Pt/C催化剂相比, PtMo/C催化剂中Pt上弱吸附态CO的电氧化均得到了促进, 而强吸附态CO则不受影响. 这些结果表明PtMo颗粒的尺寸分布和在载体上的分散状况是影响PtMo/C催化剂电催化性能的主要因素. 胶体法制备的PtMo/C与常用的PtRu/C相比, 电化学表面积虽然较低, 但在低电势下CO的起始氧化电势只有0.15 V, 而且在0.15~0.50 V之间发生电氧化的CO达到其总量的1/3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号