首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Hierarchical nanomaterials are highly suitable as electrocatalysts and electrocatalyst supports in electrochemical energy conversion devices. The intrinsic kinetics of an electrocatalyst are associated with the nanostructure of the active phase and the support, while the overall properties are also affected by the mesostructure. Therefore, both structures need to be controlled. A comparative state‐of‐the‐art review of catalysts and supports is provided along with detailed synthesis methods. To further improve the design of these hierarchical nanomaterials, in‐depth research on the effect of materials architecture on reaction and transport kinetics is necessary. Inspiration can be derived from nature, which is full of very effective hierarchical structures. Developing fundamental understanding of how desired properties of biological systems are related to their hierarchical architecture can guide the development of novel catalytic nanomaterials and nature‐inspired electrochemical devices.  相似文献   

2.
Electrochemistry will play a vital role in creating sustainable energy solutions in the future, particularly for the conversion and storage of electrical into chemical energy in electrolysis cells, and the reverse conversion and utilization of the stored energy in galvanic cells. The common challenge in both processes is the development of—preferably abundant—nanostructured materials that can catalyze the electrochemical reactions of interest with a high rate over a sufficiently long period of time. An overall understanding of the related processes and mechanisms occurring under the operation conditions is a necessity for the rational design of materials that meet these requirements. A promising strategy to develop such an understanding is the investigation of the impact of material properties on reaction activity/selectivity and on catalyst stability under the conditions of operation, as well as the application of complementary in situ techniques for the investigation of catalyst structure and composition.  相似文献   

3.
We report the microstructure,application for lithium-ion batteries of mesoporous Co3O4 prepared by modified KIT-6 template method.The sample was characterized by XRD,TEM,HRTEM and nitrogen adsorption.Their electrochemical behaviors as electrode reactants for lithium ion batteries were evaluated by cyclic voltammograms and static charge-discharge.A direct comparison of electrochemical behaviors between mesoporous nanostructure and bulk reflects interesting "nanostructure effect",which is reasonably discussed in terms of how the 3D nanostructures of Co3O4 materials function in tuning their electrochemistry.The results demonstrate that further improvement of electrochemical performance in transition metal-oxide-based anode materials can be realized via the design of multiporous nanostructured materials.  相似文献   

4.
In order to fully replace the traditional fossil energy supply system, the efficiency of electrochemical energy conversion and storage of new energy technology needs to be continuously improved to enhance its market competitiveness. The structural design of energy devices can achieve satisfactory energy conversion and storage performance. To achieve lightweight design, improve mechanical support, enhance electrochemical performance, and adapt to the special shape of the device, the structural en...  相似文献   

5.
Carbon is a simple, stable and popular element with many allotropes. The carbon family members include carbon dots, carbon nanotubes, carbon fibers, graphene, graphite, graphdiyne and hard carbon, etc. They can be divided into different dimensions, and their structures can be open and porous. Moreover, it is very interesting to dope them with other elements (metal or non‐metal) or hybridize them with other materials to form composites. The elemental and structural characteristics offer us to explore their applications in energy, environment, bioscience, medicine, electronics and others. Among them, energy storage and conversion are extremely attractive, as advances in this area may improve our life quality and environment. Some energy devices will be included herein, such as lithium‐ion batteries, lithium sulfur batteries, sodium‐ion batteries, potassium‐ion batteries, dual ion batteries, electrochemical capacitors, and others. Additionally, carbon‐based electrocatalysts are also studied in hydrogen evolution reaction and carbon dioxide reduction reaction. However, there are still many challenges in the design and preparation of electrode and electrocatalytic materials. The research related to carbon materials for energy storage and conversion is extremely active, and this has motivated us to contribute with a roadmap on ‘Carbon Materials in Energy Storage and Conversion’.  相似文献   

6.
At a time when the focus is on global warming, CO(2) emission, secure energy supply, and less consumption of fossil-based fuels, the use of renewable energy resources is essential. Various biomass resources are discussed that can deliver fuels, chemicals, and energy products. The focus is on the catalytic conversion of biomass from wood. The challenges involved in the processing of lignocellulose-rich materials will be highlighted, along with the application of porous materials as catalysts for the biomass-to-liquids (BTL) fuels in biorefineries. The mechanistic understanding of the complex reactions that take place, the development of catalysts and processes, and the product spectrum that is envisaged will be discussed, along with a sustainable concept for biorefineries based on lignocellulose. Finally, the current situation with respect to upgrading of the process technology (pilot and commercial units) will be addressed.  相似文献   

7.
罗瑾  杨乐夫  陈秉辉  钟传建 《电化学》2012,18(6):496-507
质子交换膜燃料电池作为重要的电化学能源转换装置,在提高能量转换效率、减少环境污染等方面具有诱人的前景.然而,阴极氧还原过电位较大、活性较低、稳定性差,且铂基催化剂昂贵,使该燃料电池难以商业化.纳米结构电催化剂的发展有望解决此难题。对纳米合金电催化剂其组分和结构的设计是开发高活性、高稳定性和低成本的燃料电池电催化剂的重要因素.本文综述了近期由分子设计和热化学控制处理法制备的三元纳米合金电催化剂对燃料电池氧还原反应催化性能的最新进展.该方法可控制纳米合金的尺寸、组成以及二元和三元纳米催化剂的合金化程度.以高活性的三元纳米合金催化剂PtNiCo/C为例,综述了在设计燃料电池电催化剂时结构和组成的纳米级调优的重要性.PtNiCo/C电催化剂的质量比活性远高于其二元合金催化剂和Pt/C商业电催化剂.三元电催化剂的催化活性可通过控制其组成来调节.文章还讨论了三元纳米合金催化剂的结构及其协同效应对增强其电催化性能的影响.  相似文献   

8.
Self-assembly is one of the most used strategies in the controlled synthesis and design of well-organized nanomaterials for various applications in diverse realms namely catalysis, sensors, microelectronics, energy storage, and energy conversion. It is quite common to see reports on the synthesis and design of several self-assembled nanomaterials for the application in the catalysis of various chemical, photochemical, and electrochemical reactions and processes. Nevertheless, a combined overview on the synthetic strategies for self-assembled nanomaterials has not been reported in any form in literature. Owing to the current interest shown and the future significance on the self-assembled nanomaterials, it is highly essential to have such an elaborated review on the progress and perspectives of synthesis of self-assembled nanomaterials and their subsequent application to catalysis of various chemical, photochemical, and electrochemical reactions and processes. In this review, we have highlighted various synthetic methodologies used so far for fabricating the self-assembled nanomaterials that includes Langmuir–Blodgett method, layer-by-layer assembly, amphiphilic (artificial and bio) self-assembly, and template-free approach. Nanomaterials derived from the above mentioned methods in various catalysis reactions are also highlighted in detail with an emphasis on confronts and prospects in the field of materials self-assembling and its concomitant application to catalysis.  相似文献   

9.
理性设计的氮化碳(C_3N_4)基纳米复合材料具有优异的电子结构和光电化学性能。这使其不仅局限于光催化领域,更已经成为电化学催化领域的新宠。通过调控纳米结构,可以协同发挥复合材料性能激发电化学性能。以电化学储能及传感应用为目标,材料结构为切入点,深入分析并综述了石墨相氮化碳及其复合材料的材料设计方法、结构和性能,为进一步深化g-C_3N_4的科学化应用提供思路。  相似文献   

10.
Polydopamine (PDA)-based nanoreactors have shown exceptional promise as multifunctional materials due to their nanoscale dimensions and sub-microliter volumes for reactions of different systems. Biocompatibility, abundance of active sites, and excellent photothermal conversion have facilitated their extensive use in bioscience and energy storage/conversion. This minireview summarizes recent advances in PDA-based nanoreactors, as applied to the abovementioned fields. We first highlight the design and synthesis of functional PDA-based nanoreactors with structural and compositional diversity. Special emphasis in bioscience has been given to drug/protein delivery, photothermal therapy, and antibacterial properties, while for energy-related applications, the focus is on electrochemical energy storage, catalysis, and solar energy harvesting. In addition, perspectives on pressing challenges and future research opportunities regarding PDA-based nanoreactors are discussed.

The structural and compositional diversity of PDA-based nanoreactors has triggered fast development of their applications in bioscience and energy fields.  相似文献   

11.
Nanomaterials used in electrochemical sensors can significantly improve the analytical performance to environmental pollutants. This review mainly discusses the strategies for signal amplification by the rational design of nanoelectrode materials from the perspective of mass and electron transfer processes of electrode/solution interface. First, the advantages and features of nanostructured electrochemical sensors for environmental pollutants are summarized. Then, the detailed discussions are focused on the signal amplification strategies by regulating dimensionality, atomic arrangement, and composition of electrode materials. This review gives a unique insight about the influences of electrode material design on mass and electron transfer processes of electrochemical sensors. Finally, on the basis of the current achievements in the field of nanomaterials, the perspectives on the challenges and opportunities for the exploration of nanostructured electrochemical sensors are put forward.  相似文献   

12.
The advent of ionic liquids (ILs) as eco‐friendly and promising reaction media has opened new frontiers in the field of electrochemical energy storage. Beyond their use as electrolyte components in batteries and supercapacitors, ILs have unique properties that make them suitable as functional advanced materials, media for materials production, and components for preparing highly engineered functional products. Aiming at offering an in‐depth review on the newly emerging IL‐based green synthesis processes of energy storage materials, this Review provides an overview of the role of ILs in the synthesis of materials for batteries, supercapacitors, and green electrode processing. It is expected that this Review will assess the status quo of the research field and thereby stimulate new thoughts and ideas on the emerging challenges and opportunities of IL‐based syntheses of energy materials.  相似文献   

13.
The challenges of pollution, environmental science, and energy consumption have become global issues of broad societal importance. In order to address these challenges, novel functional systems and advanced materials are needed to achieve high efficiency, low emission, and environmentally friendly performance. A promising approach involves nanostructure‐level controls of functional material design through a novel concept, nanoarchitectonics. In this account article, we summarize nanoarchitectonic approaches to create nanoscale platform structures that are potentially useful for environmentally green and bioprocessing applications. The introduced platforms are roughly classified into (i) membrane platforms and (ii) nanostructured platforms. The examples are discussed together with the relevant chemical processes, environmental sensing, bio‐related interaction analyses, materials for environmental remediation, non‐precious metal catalysts, and facile separation for biomedical uses.  相似文献   

14.
陈卫 《电化学》2015,21(6):503
可以预见,在相当一段时期内,能源和环境将是全球发展的两大主题. 其实,人类对能源的获取方式将对地球的生态环境和人类未来的生存状态和生活方式产生重要影响. 正因为如此,世界各国正在大力发展可再生能源和清洁能源. 电化学能源是将化学能高效转变为电能的一种能量转换方式,它历史悠久,但不断被改进和创新,尤其是近年来得到了较快的发展. 目前,电化学能源转换和存储器件主要包括一次电池(如锌锰电池等)、二次电池(如铅酸电池、镍氢电池、锂离子电池等)、燃料电池、金属-空气电池以及超级电容器等. 电化学能源和其它可再生能源相互补充、交叉利用将是未来清洁能源的主要发展方向.  相似文献   

15.
16.
魏家祺  陈晓东  李述周 《电化学》2022,28(10):2214012
氢气是一种清洁、高效、可再生的新型能源,并且是未来碳中和能源供应中最具潜力的化石燃料替代品。因此,可持续氢能源制造具有极大的吸引力与迫切的需求,尤其是通过清洁、环保、零排放的电解水方法。然而,目前的电解水反应受到其缓慢的动力学以及低成本/能源效率的制约。在这些方面,电化学合成通过制造先进的电催化剂和提供更高效/增值的共电解替代品,为提高水电解的效率和效益提供了广阔的前景。它是一种环保、简单的通过电解或其他电化学操作,对从分子到纳米尺度的材料进行制造的方法。本文首先介绍了电化学合成的基本概念、设计方法以及常用方法。然后,总结了电化学合成技术在电解水领域的应用及进展。我们专注于电化学合成的纳米结构电催化剂以实现更高效的电解水制氢,以及小分子的电化学氧化以取代电解水制氢中的析氧共反应,实现更高效、 增值的共电解制氢。我们系统地讨论了电化学合成条件与产物的关系,以启发未来的探索。最后,本文讨论了电化学合成在先进电解水以及其他能量转换和储存应用方面的挑战和前景。  相似文献   

17.
陈军 《电化学》2016,22(5):435
以电化学能量储存和转化为特点的电池、电容器等储能技术,正在信息通讯、新能源汽车、微电网、分布式发电、大型电力储能、智能电网等领域得到广泛应用,将有力推动能源互联网的快速发展. 作为储能核心技术之一的锂电池、钠电池与超级电容器,更加受到重视. 这些电化学储能装置的性能依赖于所使用的电极材料与结构等. 发展高能量密度、高功率密度和长循环寿命的低成本储能体系成为能源电化学材料研究的核心. 本专辑围绕锂离子电池、钠离子电池、锂硫电池、超级电容器等,收录了在该领域具有丰富研究经验的团队所撰写的8篇相关综述和研究论文. 其中,围绕下一代锂离子电池负极硅材料,邀请了3篇综述和研究论文;鉴于丰富的钠资源,在钠离子电池研究方面也邀请了3篇综述论文;同时在高能量密度的锂硫电池和高功率密度的超级电容器方面各邀请1篇论文. 从这些论文中,可以部分看出锂离子电池、钠离子电池、锂硫电池、超级电容器等能源电化学材料的研究进展. 希望借助此专辑的出版,能使广大读者更好地了解上述几类电池、电容器的研究现状,研究趋势和存在问题及挑战,为更深入地开展该领域研究提供参考,以推动我国能源电化学材料研究的进一步发展. 在此,对专辑的所有作者、审稿人及编辑部工作人员的辛勤劳动,表示最衷心的感谢!  相似文献   

18.
基于电化学反应的能源储存与转化技术为全球能源结构的转型提供了一条绿色、 可持续的途径, 高效的电催化剂在其中扮演着重要的角色. 得益于在物理、 化学性质上的独特优势, 单原子催化剂在电催化能源转化方面展现出巨大的应用前景. 本文综合评述了单原子催化剂的合成及其能源电催化应用的研究进展, 介绍了单原子催化剂的常见表征手段, 总结了单原子催化剂的合成方法(湿化学法、 高温热解法、 原子沉积法、 电化学沉积法等), 并介绍了该类材料在氧还原、 二氧化碳电还原、 电解水及氮气电还原反应中的研究进展, 重点探讨了催化剂微观结构与其性能之间的关系, 最后, 对单原子能源电催化领域所面临的挑战进行了总结, 并对该领域未来的发展方向进行了展望.  相似文献   

19.
Affordable and sustainable, also often quoted as Pt-free or metal-free, electrocatalysts have a pivotal role in various electrochemical energy conversion systems, which are attracting huge demands in the 21st century. Recent technological development enables us to perform computationally empowered experimental design or discovery of materials constituted of abundant elements (e.g. carbon, nitrogen, boron, etc.) with desirable electrochemical properties. These works indicate that nontraditional candidates, such as insulators being believed to unfavorable, are indeed found to be applicable as active electrocatalysts. This review summarizes state-of-the-art cooperative experimental/theoretical works devoted to understand fundamental aspects of electron- /proton-transferring surface electrochemical reactions from the point of materials. These works are expected to accelerate material research to find out optimal Pt- or metal-free electrocatalysts, even based on material classes which were previously rejected as candidates, toward electrochemical energy conversion devices.  相似文献   

20.
梁骥  闻雷  成会明  李峰 《电化学》2015,21(6):505
电化学储能材料是电化学储能器件发展及性能提高的关键之一. 碳材料在各种电化学储能体系中都起到了极为重要的作用,特别是近期出现的各类新型碳材料为电化学储能的发展带来了新动力,并展现了广阔的应用前景. 本文综述了碳材料,特别是以碳纳米管和石墨烯为代表的纳米碳材料,在典型电化学储能器件(锂离子/钠离子电池、超级电容器和锂硫电池等)、柔性电化学储能和电化学催化等领域的研究进展,并对碳材料在这些领域的应用前景进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号