首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present research is focused on the offline combination of normal-phase LC to double-oven GC x GC-quadrupole MS. Initially, a diesel sample was subjected to automated LC x GC in order to define the elution windows of four fractions, viz., saturated hydrocarbons, monocyclic aromatics, dicyclic aromatics, tri- + tetracyclic aromatics; each fraction was collected exploiting the LC system in a further analysis and subjected to large-volume-injection-GC x GC analysis using an apolar-polar column combination. The GC x GC operational conditions were tuned in relation to the specific separation requirements of each heart-cut. The main benefits of what can be defined as offline LC-GC x GC were: (i) the high first-dimension LC selectivity; (ii) the injection of high sample amounts in the GC x GC system, enabling the detection and quantification of a series of low-amount diesel constituents; (iii) improved GC x GC operational conditions for each heart-cut with respect to direct GC x GC.  相似文献   

2.
In the present work, a new liquid chromatography–mass spectrometry (LC–MS) system with on-line pretreatment using column switching and a dilution function was developed. This system can be used under conventional high-performance liquid chromatography (LC) separation conditions, including mobile phases containing phosphate buffer. The built-in autodilution function greatly improves the trapping efficiency for target compounds, followed by desaltation that optimizes the ionization conditions for MS analysis. This fully automated two-dimensional LC system interfaced with mass spectrometry provided a powerful tool for the determination of impurity profiles in pharmaceutical research and the identification of traditional Chinese medicine in natural products.  相似文献   

3.
A comprehensive 2-D LC x LC system was developed for the separation of phenolic and flavone antioxidants, using a PEG-silica column in the first dimension and a C(18) column with porous-shell particles or a monolithic column in the second dimension. Combination of PEG and C18 or C8 stationary phase chemistries provide low selectivity correlations between the first dimension and the second dimension separation systems. This was evidenced by large differences in structural contributions to the retention by -COOH, -OH and other substituents on the basic phenol or flavone structure. Superficially porous columns with fused core particles or monolithic columns improve the resolution and speed of second dimension separation in comparison to a fully porous particle C(18) column. Increased peak capacity and high orthogonality in different 2-D setups was achieved by using gradients with matching profiles running in parallel in the two dimensions over the whole 2-D separation time range. Multi-dimensional set-up combining the LC x LC separation on-line with UV and multi-channel coulometric detection and off-line with MS/MS technique allowed positive peak identification. The Coularray software compensates for the effects of the baseline drift during the gradient elution and is compatible with parallel gradient comprehensive LC x LC technique. Furthermore, it provides significant improvement in the sensitivity and selectivity of detection in comparison to both UV and MS detection. The utility of these systems has been demonstrated in the analysis of beer samples.  相似文献   

4.
During each sampling period, an accumulating resampler (modulator) in comprehensive 2-D chromatography accumulates all eluite from the first-dimension column and reinjects the whole or a portion of the accumulated material into the second-dimension column. The detrimental effect of the resampling on peak capacity of a 2-D separation comes from the broadening of the peaks along the first-dimension due to the resampling itself and due to the subsequent peak reconstruction. Sampling density (rho(S)) of resampling is the number of sampling periods per standard deviation of a peak at the outlet of the first-dimension column. It is shown that a simple formula describes the peak broadening as a function of rho(S) at any (even practically too low or too high) rho(S), for the peaks of any (not necessarily Gaussian) shape, for a wide class of peak reconstruction techniques, and for any 2-D separation (GC x GC, LC x LC, etc.). In capillary GC x GC, optimal rho(S) (rho(S,Opt)) depends on the type of the peak reconstruction and on the degree of the gas decompression along the second-dimension column. When reconstructing using linear interpolation, rho(S,Opt) = 0.7 at large and rho(S,Opt) = 0.5 at small gas decompression. The choice of exact optimal conditions is not critical. Thus, two-fold departure of actual rho(S) from rho(S,Opt) in either direction (under- or oversampling) causes only 10% drop in the net peak capacity of GC x GC. The quantitative effect of a much greater undersampling is also evaluated.  相似文献   

5.
The detailed characterisation of middle distillates is essential for a better understanding of reactions involved in refining process. Owing to higher resolution power and enhanced sensitivity, comprehensive two-dimensional gas chromatography (GC x GC) is a powerful tool for improving characterisation of petroleum samples. The aim of this paper is to compare GC x GC and various ASTM methods -- gas chromatography (GC), liquid chromatography (LC) and mass spectrometry (MS) -- for group type separation and detailed hydrocarbon analysis. Best features of GC x GC are demonstrated and compared to these techniques in terms of cost, time consumption and accuracy. In particular, a new approach of simulated distillation (SimDis-GC x GC) is proposed: compared to the standard method ASTM D2887 it gives unequal information for better understanding of conversion process.  相似文献   

6.
A variable flow "peak trapping" liquid chromatography (LC) interface has been developed for the coupling of nanoscale LC to electrospray ionization mass spectrometry (ESI-MS). The presented peak trapping LC interface allows for the extended analysis time of co-eluting compounds and has been employed for the identification of proteins via tandem mass spectrometry (MS/MS). The variable flow process can be controlled either manually or in a completely automated manner where the mass spectrometer status determines the status of the variable flow interface. When the mass spectrometer operates in MS survey mode, the interface is operated in a so-called "high-flow" mode. Alternatively, the interface is operated in a "low-flow" mode during MS/MS analysis. In the "high-flow" mode of the variable flow process the column flow rate is typically around 200 nL/min, whereas in the "low-flow" mode the column effluent is introduced into the source of the mass spectrometer at 25 nL/min. In addition to the flow reduction during MS/MS analysis, the gradient is paused to preserve the peptide separation on the analytical nanoscale LC column. The performance of the variable flow nanoscale LC/MS/MS interface is demonstrated by the automated analysis of standard peptide mixtures and protein digests utilizing variable flow, data-dependent scanning MS/MS techniques, and automated database searching.  相似文献   

7.
A 2D liquid chromatography (LC) system using hydrophilic interaction chromatography (HILIC) and reversed phase columns has been employed for comprehensive (LC × LC) separation of rat muscle tissue micro-dialysate. Incorporation of an on-line reverse-phase solid phase extraction (SPE) enrichment column in front of the first dimension enabled aqueous samples with high salt concentrations to be injected directly without compromising the chromatographic performance of the HILIC column. Since the SPE enrichment column allowed injection of large sample volumes (e.g. 450 μL), a capillary HILIC column (inner diameter 0.3 mm) could be employed instead of a larger column which is often used in the first dimension to load sufficient amounts of sample. The two chromatographic dimensions were connected using a column selector system with 18, 1.0 mm I.D. C18 “transition” SPE columns. A PLRP C18 column was used in the second dimension. The 2D LC system’s performance was evaluated with a tryptic digest mixture of three model proteins. Good trapping accuracy (HILIC→transition SPE→RP recovery >95%) and repeatability (within-and between day retention time RSDs of first and second dimension chromatography >1%) was achieved. A dialysis sample of rat muscle tissue was separated with the 2D system, revealing complexity and large differences in concentrations of the various compounds present, factors which could potentially interfere with the quantification and monitoring of two target analytes, arg-bradykinin and bradykinin. Subsequently, “Heart-cut” 2D LC-electrospray–mass spectrometry (ESI–MS) with post-column on-line standard injection was employed to monitor arg-bradykinin and bradykinin levels as a function of various muscle conditions. The method’s quantification precision was RSD = 3.4% for bradykinin.  相似文献   

8.
A multidimensional, on-line coupled liquid chromatographic/gas chromatographic system was developed for the quantification of polycyclic aromatic hydrocarbons (PAHs). A two-dimensional liquid chromatographic system (2D-liquid chromatography (LC)), with three columns having different selectivities, was connected on-line to a two-dimensional gas chromatographic system (2D-gas chromatography (GC)). Samples were cleaned up by combining normal elution and column back-flush of the LC columns to selectively remove matrix constituents and isolate well-defined, PAH enriched fractions. Using this system, the sequential removal of polar, mono/diaromatic, olefinic and alkane compounds from crude extracts was achieved. The LC/GC coupling was performed using a fused silica transfer line into a programmable temperature vaporizer (PTV) GC injector. Using the PTV in the solvent vent mode, excess solvent was removed and the enriched PAH sample extract was injected into the GC. The 2D-GC setup consisted of two capillary columns with different stationary phase selectivities. Heart-cutting of selected PAH compounds in the first GC column (first dimension) and transfer of these to the second GC column (second dimension) increased the baseline resolutions of closely eluting PAHs. The on-line system was validated using the standard reference materials SRM 1649a (urban dust) and SRM 1975 (diesel particulate extract). The PAH concentrations measured were comparable to the certified values and the fully automated LC/GC system performed the clean-up, separation and detection of PAHs in 16 extracts in less than 24 h. The multidimensional, on-line 2D-LC/2D-GC system eliminated manual handling of the sample extracts and minimised the risk of sample loss and contamination, while increasing accuracy and precision.
Figure
Scheme of the 2D-LC/2D-GC system  相似文献   

9.
A modified loop-type interface is decribed which uses two 6-way valves and concurrent eluent evaporation to perform an on-line transfer and simultaneous gas chromatographic analysis of two different fractions pre-separated by liquid chromatography. The interface is used to simultaneously analyze aliphatic alcohols and sterols present in olive oil. LC pre-separation is carried out using a normal phase column (20 cm × 0.21 cm i.d.) and hexane-isopropanol (99:1) as a mobile phase at a flow of 0.2 ml/min; for the GC analysis a 5 % phenyl, 95 % dimethyl siloxane (25 m × 0.32 mm i.d., 0.4 μm film thickness) column is used.  相似文献   

10.
Recently we reported a desorption electrospray ionization (DESI) interface to combine liquid chromatography (LC) with mass spectrometry (MS) using a new LC eluent splitting strategy through a tiny orifice on LC capillary tube [J. Am. Soc. Mass Spectrom. 25, 286 (2014)]. The interface introduces negligible dead volume and back pressure, thereby allowing “near real-time” MS detection, fast LC elution, and online MS-directed purification. This study further evaluates the LC/DESI-MS performance with focus of using ultra-fast LC. Using a monolithic C18 column, metabolites in urine can be separated within 1.6 min and can be online collected for subsequent structure elucidation (e.g., by NMR, UV, IR) in a recovery yield up to 99%. Using a spray solvent with alkaline pH, negative ions could be directly generated for acidic analytes (e.g., ibuprofen) in acidic LC eluent by DESI, offering a novel protocol to realize “wrong-way around” ionization for LC/MS analysis. In addition, DESI-MS is found to be compatible with ultra-performance liquid chromatography (UPLC) for the first time.   相似文献   

11.
The trace-level determination of pesticides and their transformation products (TPs) in water by means of liquid and gas chromatography (LC and GC) is reviewed. Special attention is given to the use of (tandem) mass spectrometry for identification and confirmation purposes. The complementarity of LC- and GC-based techniques and the potential of comprehensive GC×GC are discussed, and also the impressive performance of time-of-flight mass spectrometry. It is also indicated that, in the near future, the TPs rather than the parent compounds should receive most attention—with a better understanding of matrix effects and eluent composition on the ionization efficiency of analytes being urgently required. Finally, the merits of using much shorter LC columns, or even no column at all (flow-injection analysis) in target analysis are shown, and a more cost-efficient and sophisticated strategy for monitoring programmes is briefly introduced.  相似文献   

12.
Comprehensive two-dimensional (2D) chromatographic techniques can be considered innovative methods, only quite recently developed. Since their introduction to the chromatographic community, these techniques have been used in several fields and have gained an excellent reputation as valuable and powerful analytical tools. The revolutionary aspect of comprehensive multidimensional (MD) techniques, in respect to classical MD chromatography, is that the entire sample is subjected to the 2D advantage. The resulting unprecedented separating capacity makes these approaches prime choices when analysts are challenged with highly complex mixtures. Furthermore, in the case of automated systems, instrumental analysis times are roughly the same as in monodimensional applications. The present review reports various comprehensive chromatographic applications on different food matrices. The GC x GC section highlights two fundamental aspects for component separation/identification: the exceptional peak capacity and the formation of group types on the 2D space plane. The LC x LC section reports the employment in food analysis of a recently developed multidimensional normal-phase (NP)-reversed-phase (RP) high performance liquid chromatography (HPLC) system. Also reported are comprehensive LC x GC and packed column supercritical fluid chromatography (pSFC x pSFC) applications in this field.  相似文献   

13.
Pulsed flow modulation (PFM) two-dimensional comprehensive gas chromatography (GC x GC) was combined with quadrupole-based mass spectrometry (MS) via a supersonic molecular beam (SMB) interface using a triple-quadrupole system as the base platform, which enabled tandem mass spectrometry (MS-MS). PFM is a simple GC x GC modulator that does not consume cryogenic gases while providing tunable second GC x GC column injection time for enabling the use of quadrupole-based mass spectrometry regardless its limited scanning speed. The 20-ml/min second column flow rate involved with PFM is handled, splitless, by the SMB interface without affecting the sensitivity. The combinations of PFM GC x GC-MS with SMB and PFM GC x GC-MS-MS with SMB were explored with the analysis of diazinon and permethrin in coriander. PFM GC x GC-MS with SMB is characterized by enhanced molecular ion and tailing-free fast ion source response time. It enables universal pesticide analysis with full scan and data analysis with reconstructed single ion monitoring on the enhanced molecular ion and another prominent high mass fragment ion. The elimination of the third fragment ion used in standard three ions method results in significantly reduced matrix interference. GC x GC-MS with SMB improves the GC separation, and thereby our ability for sample identification using libraries. GC-MS-MS with SMB provides better reduction (elimination) of matrix interference than GC x GC-MS. However, it is a target method, which is not always applicable. GC x GC-MS-MS does not seem to further reduce matrix interferences over GC-MS-MS and unlike GC x GC-MS, it is incompatible with library identification, but it is beneficial to have both GC x GC and MS-MS capabilities in the same system.  相似文献   

14.
Partially concurrent eluent evaporation presupposes an eluent evaporation rate in the GC pre-column that approaches the LC flow rate. Discharging the vapors through the whole GC column, evaporation rates reach 10–30 μl/min, i.e. are suitable just for LC flow rates typical for packed capillary LC columns. With an early vapor exit, evaporation rates are increased to 100–200 μl/min (under extreme conditions to some 800 μl/min), thus fitting the LC flow rates of 2 mm i.d. columns. Evaporation rates were measured for a standard set of pre-columns and conditions. The dependence of the evaporation rate on temperature, inlet pressure, carrier gas, and internal diameter of the retaining pre-column are discussed in order to allow the design of a GC system producing a desired evaporation rate.  相似文献   

15.
This paper discusses the selection of ion chromatography (IC) columns for use in comprehensive multidimensional ion chromatography (IC x IC). First, a single number was determined for a wide range of anions (one number for each anion) using the linear solvent strength model. These numbers were then used to compare the column selectivity characteristics for five different columns. Principal component analysis was used to illustrate selectivity differences between columns. Dionex AS16 and AS20 columns were selected for use in the development of an IC x IC method for the separation of ten anions. To achieve the required speed of analysis in both the first and second separation dimensions, custom column lengths were packed in-house. The use of an eluent suppressor between the first and second columns permits a relatively low flow ratio regime of only <1:20 in the first and second dimensions, respectively, which reduces dilution effects common in comprehensive multidimensional LC. Selection of the second dimension eluent conditions was aided by the development of a spreadsheet based on the linear solvent strength model.  相似文献   

16.
采用自动前处理LC/MS进行血浆中药物的快速分析   总被引:3,自引:0,他引:3  
药物研究的发展对高通量的样品处理分析提出了越来越高的要求,减少样品制备时间和分析时间是解决问题的关键。我们新近发展了一种具有在线稀释旁路和新的样品预处理柱的Shim-Pack MAYI-ODS自动柱切换HPLC和LC/MS系统,该系统无需样品前处理,可直接进样进行血浆、血清中的药物分析。本文利用自动样品前处理LC/MS系统,用ODS整体柱实现了血浆中药物的快速分析。包括样品预处理,整个分析仅需1.2min完成。  相似文献   

17.
This paper presents a novel splitting method for liquid chromatography/mass spectrometry (LC/MS) application, which allows fast MS detection of LC-separated analytes and subsequent online analyte collection. In this approach, a PEEK capillary tube with a micro-orifice drilled on the tube side wall is used to connect with LC column. A small portion of LC eluent emerging from the orifice can be directly ionized by desorption electrospray ionization (DESI) with negligible time delay (6~10 ms) while the remaining analytes exiting the tube outlet can be collected. The DESI-MS analysis of eluted compounds shows narrow peaks and high sensitivity because of the extremely small dead volume of the orifice used for LC eluent splitting (as low as 4 nL) and the freedom to choose favorable DESI spray solvent. In addition, online derivatization using reactive DESI is possible for supercharging proteins and for enhancing their signals without introducing extra dead volume. Unlike UV detector used in traditional preparative LC experiments, this method is applicable to compounds without chromophores (e.g., saccharides) due to the use of MS detector. Furthermore, this splitting method well suits monolithic column-based ultra-fast LC separation at a high elution flow rate of 4 mL/min.
Figure
?  相似文献   

18.
The introduction of liquid chromatography coupled with isotope ratio mass spectrometry (LC/IRMS) as an analytical tool for the measurement of isotope ratios in non‐volatile analytes has somewhat simplified the analytical cycle from sample collection to analysis mainly due to the avoidance of the extensive sample processing and derivatisation that were necessary for gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Here we test the performance of coupling strong anion exchange to IRMS using only the second commercially available interface; the Liquiface. The system was modified from installation specification to improve peak resolution in the interface and maintain peak separation from the column to the mass spectrometer. The system performance was assessed by the determination of sensitivity, accuracy and precision attained from carbohydrate separations. The system performed satisfactorily after modifications, resulting in maintenance of peak resolution from column to mass spectrometer. The sensitivity achieved suggested that ~150 ng carbon could be analysed with acceptable precision (<0.3‰). Accuracy was maintained in the interface as determined by correlation with offline techniques, resulting in regression coefficient of r2 = 0.98 and a slope of 0.99. The average precision achieved for the separation of seven monosaccharides was 0.36‰. The integration of a carbonate removal device limited the effect of background carbon perturbations in the mass spectrometer associated with eluent gradients, and the coupling of strong anion‐exchange chromatography with IRMS was successfully achieved using the Liquiface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The scope of compound-specific stable isotope analysis has recently been increased with the development of the LC IsoLink which interfaces high-performance liquid chromatography (HPLC) and isotope ratio mass spectrometry (IRMS) to provide online LC/IRMS. This enables isotopic measurement of non-volatile compounds previously not amenable to compound-specific analysis or requiring substantial modification for gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), which results in reduced precision. Amino acids are an example of such compounds.We present a new chromatographic method for the HPLC separation of underivatized amino acids using an acidic, aqueous mobile phase in conjunction with a mixed-mode stationary phase that can be interfaced with the LC IsoLink for compound-specific delta13C analysis. The method utilizes a reversed-phase Primesep-A column with embedded, ionizable, functional groups providing the capability for ion-exchange and hydrophobic interactions. Baseline separation of 15 amino acids and their carbon isotope values are reported with an average standard deviation of 0.18 per thousand (n = 6). In addition delta13C values of 18 amino acids are determined from modern protein and archaeological bone collagen hydrolysates, demonstrating the potential of this method for compound-specific applications in a number of fields including metabolic, ecological and palaeodietary studies.  相似文献   

20.
The potential and current limitations of comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC x GC-TOF-MS) for the analysis of very complex samples were studied with the separation of cigarette smoke as an example. Because of the large number of peaks in such a GC x GC chromatogram it was not possible to perform manual data processing. Instead, the GC-TOF-MS software was used to perform peak finding, deconvolution and library search in an automated fashion; this resulted in a peak table containing some 30000 peaks. Mass spectral match factors were used to evaluate the library search results. The additional use of retention indices and information from second-dimension retention times can substantially improve the identification. The combined separation power of the GC x GC-TOF-MS system and the deconvolution algorithm provide a system with a most impressive separation power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号