首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infrared spectra of the NH stretching vibrations of (NH3)n clusters (n = 2-4) have been obtained using the helium droplet isolation technique and first principles electronic structure anharmonic calculations. The measured spectra exhibit well-resolved bands, which have been assigned to the nu1, nu3, and 2nu4 modes of the ammonia fragments in the clusters. The formation of a hydrogen bond in ammonia dimers leads to an increase of the infrared intensity by about a factor of 4. In the larger clusters the infrared intensity per hydrogen bond is close to that found in dimers and approaches the value in the NH3 crystal. The intensity of the 2nu4 overtone band in the trimer and tetramer increases by a factor of 10 relative to that in the monomer and dimer, and is comparable to the intensity of the nu1 and nu3 fundamental bands in larger clusters. This indicates the onset of the strong anharmonic coupling of the 2nu4 and nu1 modes in larger clusters. The experimental assignments are compared to the ones obtained from first principles electronic structure anharmonic calculations for the dimer and trimer clusters. The anharmonic calculations were performed at the M?ller-Plesset (MP2) level of electronic structure theory and were based on a second-order perturbative evaluation of rovibrational parameters and their effects on the vibrational spectra and average structures. In general, there is excellent (<20 cm(-1)) agreement between the experimentally measured band origins for the N-H stretching frequencies and the calculated anharmonic vibrational frequencies. However, the calculations were found to overestimate the infrared intensities in clusters by about a factor of 4.  相似文献   

2.
The Cuban chromites with a spinel structure, FeCr2O4 have been studied using optical absorption and EPR spectroscopy. The spectral features in the electronic spectra are used to map the octahedral and tetrahedral co-ordinated cations. Bands due Cr3+ and Fe3+ ions could be distinguished from UV-vis spectrum. Chromite spectrum shows two spin allowed bands at 17,390 and 23,810 cm(-1) due to Cr3+ in octahedral field and they are assigned to 4A2g(F) --> 4T2g(F) and 4A2g(F) --> 4T1g(F) transitions. This is in conformity with the broad resonance of Cr3+ observed from EPR spectrum at g = 1.903 and a weak signal at g = 3.861 confirms Fe3+ impurity in the mineral. Bands of Fe3+ ion in the optical spectrum at 13,700, 18,870 and 28,570 cm(-1) are attributed to 6A1g(S) --> 4T1g(G), 6A1g(S) --> 4T2g(G) and 6A1g(S) --> 4T2g(P) transitions, respectively. Near-IR reflectance spectroscopy has been used effectively to show intense absorption bands caused by electronic spin allowed d-d transitions of Fe2+ in tetrahedral symmetry, in the region 5000-4000 cm(-1). The high frequency region (7500-6500 cm(-1)) is attributed to the overtones of hydroxyl stretching modes. Correlation between Raman spectral features and mineral chemistry are used to interpret the Raman data. The Raman spectrum of chromite shows three bands in the CrO stretching region at 730, 560 and 445 cm(-1). The most intense peak at 730 cm(-1) is identified as symmetric stretching vibrational mode, A1g(nu1) and the other two minor peaks at 560 and 445 cm(-1) are assigned to F2g(nu4) and E(g)(nu2) modes, respectively. Cation substitution in chromite results various changes both in Raman and IR spectra. In the low-wavenumber region of Raman spectrum a significant band at 250 cm(-1) with a component at 218 cm(-1) is attributed F2g(nu3) mode. The minor peaks at 195, 175, 160 cm(-1) might be due to E(g) and F2g symmetries. Broadening of the peak of A1g mode and shifting of the peak to higher wavenumber observed as a result of increasing the proportion of Al3+O6. The presence of water in the mineral shows bands in the IR spectrum at 3550, 3425, 3295, 1630 and 1455 cm(-1). The vibrational spectrum of chromite gives raise to four frequencies at 985, 770, 710 and 650 cm(-1). The first two frequencies nu1 and nu2 are related to the lattice vibrations of octahedral groups. Due to the influence of tetrahedral bivalent cation, vibrational interactions occur between nu3 and nu4 and hence the low frequency bands, nu3 and nu4 correspond to complex vibrations involving both octahedral and tetrahedral cations simultaneously. Cr3+ in Cuban natural chromites has highest CFSE (20,868 cm(-1)) when compared to other oxide minerals.  相似文献   

3.
The absorption spectra of the (CH3)2O...HF complex in the range of 4200-2800 cm(-1) were recorded in the gas phase at a resolutions of 0.1 cm(-1) at T = 190-340 K. The spectra obtained were used to analyze their structure and to determine the temperature dependencies of the first and second spectral moments. The band shape of the (CH3)2O...HF complex in the region of the nu1(HF) stretching mode was reconstructed nonempirically. The nu1 and nu3 stretching vibrations and four bending vibrations responsible for the formation of the band shape were considered. The equilibrium geometry and the 1D-4D potential energy surfaces were calculated at the MP2 6-311++G(2d,2p) level with the basis set superposition error taken into account. On the basis of these surfaces, a number of one- and multidimensional anharmonic vibrational problems were solved by the variational method. Solutions of auxiliary 1D and 2D vibrational problems showed the strong coupling between the modes. The energy levels, transition frequencies and intensities, and the rotational constants for the combining vibrational states necessary to reconstruct the spectrum were obtained from solutions of the 4D problem (nu1, nu3, nu5(B2), nu6(B2)) and the 2D problem (nu5(B1), nu6(B1)). The theoretical spectra reconstructed for different temperatures as a superposition of rovibrational bands associated with the fundamental, hot, sum, and difference transitions reproduce the shape and separate spectral features of the experimental spectra. The calculated value of the nu1 frequency is 3424 cm(-1). Along with the frequencies and absolute intensities, the calculation yields the vibrationally averaged values of the separation between the centers of mass of the monomers Rc.-of-m., R(O...F), and r(HF) for different states. In particular, upon excitation of the nu1 mode, Rc.-of-m. becomes shorter by 0.0861 A, and r(HF) becomes longer by 0.0474 A.  相似文献   

4.
The IR spectra for various sizes of pyrrole clusters were measured in the NH stretching vibration region by infrared cavity ringdown spectroscopy. The hydrogen-bonded structures and normal modes of the pyrrole clusters were analyzed by a density functional theory calculation of the B3LYP/6-311+G(d,p) level. Two types of pulsed nozzles, a slit and a large pinhole, were used to generate different cluster size distributions in a supersonic jet. A rotational contour analysis of the NH stretching vibration for the monomer revealed that the slit nozzle provides a warmer jet condition than the pinhole one. The IR spectra, measured under the warmer condition, showed the intense bands at 3444, 3392, and 3382 cm(-1), which were assigned to hydrogen-bonded NH stretching vibrations due to the dimer, the trimer, and the tetramer, respectively. On the other hand, the IR spectra measured under a lower temperature condition by a pinhole nozzle showed a broad absorption feature in addition to sharp bands. This broad absorption was reproduced by the sum of two Gaussians peaks at 3400 and 3372 cm(-1) with widths of 30 and 50 cm(-1) (FWHM), respectively. Compared with the spectra of the condensed phase, two bands at 3400 and 3372 cm(-1) were assigned to hydrogen-bonded NH stretching vibrations of larger clusters having liquid-like and solid-like structures, respectively.  相似文献   

5.
The gas phase infrared spectrum (3250-3810 cm-1) of the singly hydrated ammonium ion, NH4+(H2O), has been recorded by action spectroscopy of mass selected and isolated ions. The four bands obtained are assigned to N-H stretching modes and to O-H stretching modes. The N-H stretching modes observed are blueshifted with respect to the corresponding modes of the free NH4+ ion, whereas a redshift is observed with respect to the modes of the free NH3 molecule. The O-H stretching modes observed are redshifted when compared to the free H2O molecule. The asymmetric stretching modes give rise to rotationally resolved perpendicular transitions. The K-type equidistant rotational spacings of 11.1(2) cm-1 (NH4+) and 29(3) cm-1 (H2O) deviate systematically from the corresponding values of the free molecules, a fact which is rationalized in terms of a symmetric top analysis. The relative band intensities recorded compare favorably with predictions of high level ab initio calculations, except on the nu3(H2O) band for which the observed value is about 20 times weaker than the calculated one. The nu3(H2O)/nu1(H2O) intensity ratios from other published action spectra in other cationic complexes vary such that the nu3(H2O) intensities become smaller the stronger the complexes are bound. The recorded ratios vary, in particular, among the data collected from action spectra that were recorded with and without rare gas tagging. The calculated anharmonic coupling constants in NH4+(H2O) further suggest that the coupling of the nu3(H2O) and nu1(H2O) modes to other cluster modes indeed varies by orders of magnitude. These findings together render a picture of a mode specific fragmentation dynamic that modulates band intensities in action spectra with respect to absorption spectra. Additional high level electronic structure calculations at the coupled-cluster singles and doubles with a perturbative treatment of triple excitations [CCSD(T)] level of theory with large basis sets allow for the determination of an accurate binding energy and enthalpy of the NH4+(H2O) cluster. The authors' extrapolated values at the CCSD(T) complete basis set limit are De [NH4+-(H2O)]=-85.40(+/-0.24) kJ/mol and DeltaH(298 K) [NH4+-(H2O)]=-78.3(+/-0.3) kJ/mol (CC2), in which double standard deviations are indicated in parentheses.  相似文献   

6.
The mineral allactite [Mn(7)(AsO(4))(2)(OH)(8)] is a basic manganese arsenate which is highly pleochroic. The use of the 633 nm excitation line enables quality spectra of to be obtained irrespective of the crystal orientation. The mineral is characterised by a set of sharp bands in the 770-885 cm(-1) region. Intense and sharp Raman bands are observed at 883, 858, 834, 827, 808 and 779 cm(-1). Collecting the spectral data at 77K enabled better band separation with narrower bandwidths. The observation of multiple AsO(4) stretching bands indicates the non-equivalence of the arsenate anions in the allactite structure. In comparison the infrared spectrum shows a broad spectral profile with a series of difficult to define overlapping bands. The low wavenumber region sets of bands which are assigned to the nu(2) modes (361 and 359 cm(-1)), the nu(4) modes (471, 452 and 422 cm(-1)), AsO stretching vibrations at 331 and 324 cm(-1), and bands at 289 and 271 cm(-1) which may be ascribed to MnO stretching modes. The observation of multiple bands shows the loss of symmetry of the AsO(4) units and the non-equivalence of these units in the allactite structure. The study shows that highly pleochroic minerals can be studied by Raman spectroscopy.  相似文献   

7.
The S=O stretching mode in sulfoxides, having a frequency in the 950-1150?cm(-1) range, is tested as a structural label via dual-frequency two-dimensional infrared (2DIR) spectroscopy. The properties of this structural reporter are studied in several compounds, including (4,4(')-dimethyl-2,2(')-bipyridyl)(o-methylsulfinylbenzoate) ruthenium II, [Ru(dmb)(2)(BzSO)](+), (RuBzSO), octylsulfinylpropionic acid (OSPA), and o- and p-methylsulfinyl-benzoic acid (oMSBA and pMSBA). The mode assignment in the fingerprint region for these compounds is made using a combination of density functional theory calculations and 2DIR and relaxation-assisted 2DIR (RA 2DIR) spectroscopies. The SO stretching mode frequency and IR intensity demonstrate substantial sensitivity to the molecular structure. Multiple cross peaks of the C=O and S=O stretching modes with modes in the fingerprint region (930-1450?cm(-1)) were recorded. The 2DIR and RA 2DIR spectra focusing at interactions of a high-frequency mode of a ligand with the modes in the fingerprint region provide a spectral fingerprint of a compound and help mode assignment in the often congested fingerprint region. The cross-peak amplitudes in oMSBA, pMSBA, and OSPA were compared with the theoretical predictions based on the computed values for the off-diagonal anharmonicities and a reasonable match is found. The SO stretching mode provides means for assigning other modes in the fingerprint region and constitutes a promising structural reporter for the 2DIR and RA 2DIR spectroscopy measurements.  相似文献   

8.
The FTIR spectra of CH2[double bond]CHF have been investigated in the nu(8), nu(10), and nu(11) region between 750 and 1050 cm(-1) at a resolution of about 0.002 cm(-1). The nu(8) vibration of symmetry species A' gives rise to an a/b-type hybrid band, while the nu(10) and nu(11) modes of A' ' symmetry produce c-type absorptions. Due to the proximity of their band origins, the three vibrations perturb each other by Coriolis and high-order anharmonic resonances. In particular, the interactions between the nu(8) and nu(10) modes are very strong and widespread with band origins separated by only 1.37 cm(-1). Besides the expected c-type characteristics, the nu(10) band shows a very intense pseudo a-type component caused by the strong first-order Coriolis resonances with the nu(8) state. Furthermore, the 2nu(9) "dark state" was found to be involved in the interacting band systems. The spectral analysis resulted in the identification of 3144, 3235, and 3577 transitions of the nu(8), nu(10), and nu(11) vibrations, respectively. Almost all the assigned data were simultaneously fitted using the Watson's A-reduction Hamiltonian in the Ir representation and the perturbation operators. The model employed includes nine types of resonances within the tetrad nu(8)/nu(10)/nu(11)/2nu(9) and a set of spectroscopic constants for the nu(8), nu(10), and nu(11) fundamentals as well as parameters for the "dark state" 2nu(9), and fourteen coupling terms have been determined.  相似文献   

9.
The IR absorption spectra of α,ω-alkanediols with different chain lengths, HO(CH2)22OH and HO(CH2)44OH, in the spectral range of 400–5000 cm?1 are analyzed. The assignment of numerous absorption bands to vibration modes in short methylene sequences and terminal hydroxyl groups is suggested. The splitting of IR absorption bands into doublets at 720–730 cm?1 (rocking vibrations of CH2 groups) and 1463–1473 cm?1 (bending vibrations of CH2 groups) testifies that the crystal unit subcells in the lamellae of alkanediols are orthorhombic with parameters typical of normal hydrocarbons. The specific features of absorption bands due to O-H stretching and C-O-H bending vibrations have been analyzed. These bands appear during formation of lengthy associates from hydrogen bonds formed by hydroxyl groups on the surface of elementary lamellae. A sharp increase in the intensity of the absorption bands in progression of C-C stretching and CH2 wagging vibrations due to the anharmonic Fermi resonance with the stretching vibrations of C-O groups in the terminal hydroxyl groups has been detected.  相似文献   

10.
The vibrational characteristics (vibrational frequencies and infrared intensities) for the hydrogen-bonded systems of nicotinamide (NA(Z) and NA(E)) with dimethyl sulfoxide (DMSO) have been predicted using ab initio SCF/6-31G(d,p) and DFT (BLYP/6-311++G(d,p)) calculations. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between nicotinamide (NA(Z) and NA(E)) and DMSO leads to large red shifts of the stretching vibrations for the hydrogen-bonded N-H bonds of nicotinamide and very strong increase in their IR intensity. The results from the BLYP/6-311++G(d,p) calculations show that the predicted red shifts of the nu(s)(NH) and nu(as)(NH) vibrations for the complex NA(E)-DMSO (1:2) (Deltanu(as)(NH)=-186 cm(-1) and Deltanu(s)(NH)=-198 cm(-1)) are in better agreement with the experimentally measured. The magnitudes of the wavenumber shifts are indicative of strong NH...O hydrogen-bonded interactions in both complexes. The calculations predict an increase of the IR intensity of nu(s)(NH) and nu(as)(NH) vibrations in the complexes up to 14 times. Having in mind that in more cases the predicted changes in the vibrational characteristics for the complexes studied are very near, it could be concluded that both conformers of nicotinamide, Z-conformer and E-conformer, are present in the solution forming the hydrogen-bonded complexes with DMSO.  相似文献   

11.
Raman spectra of propylamine (C3H7NH2) and its binary mixtures, C3H7NH2 + CH3OH with varying mole fractions of the reference system, C3H7NH2, C were recorded in two widely apart wavenumber regions, 3100-3600 cm(-1) and 1225-1325 cm(-1). In the former region, the two Raman bands at approximately 3305 and approximately 3326 cm(-1), obtained after the line shape analysis, which were assigned to symmetric nu(N-H) and anti-symmetric nu(N-H) stretching modes, respectively, show a downshift upon dilution. However, whereas the nu(N-H) anti-symmetric mode shows a shift of 18.6 cm(-1), the nu(N-H) symmetric mode shows a much smaller shift (5.7 cm(-1)) between neat liquid and high dilution, C = 0.1. This aspect has been explained using the optimized geometries calculated employing ab initio theory (MP2 level) for the neat C3H7NH2 and its different hydrogen-bonded complexes. The linewidth versus concentration plot for the nu(N-H) anti-symmetric stretching mode, however exhibits a distinct maxima at C = 0.4, which has been explained as a slight departure from the concentration fluctuation model. In the latter region, a symmetric peak is observed, which corresponds to nu(C-N) stretching mode, which shows an upshift upon dilution and an almost linear concentration dependence. This has also been explained in terms of the parameters obtained from the optimized geometries of the different hydrogen-bonded complexes.  相似文献   

12.
We have investigated the infrared (IR) vibrational spectra of acetaminophen (N(4-hydroxyphenyl) acetamide or paracetamol) complexes formed with ethanol and acetone in relation to the nature of the specific intermolecular interactions involved in the stabilization of the complexes. The structures and binding energies of the complexes have been determined using Hartree-Fock (HF) and DFT-B3PW91 procedures and different Pople's basis sets as well. The main results are presented and discussed by considering the hydroxyl (OH), amino (NH), and carbonyl (CO) chemical groups of acetaminophen interacting with the acetone or ethanol molecules either separately or in conjunction in the complex formation. The frequency shifts and IR intensity variations associated with the internal modes of acetaminophen (namely nu(OH), nu(NH), and nu(CO)) as well as the most pertinent vibrational probes of ethanol (nu(OH)) and acetone (symmetric nu(CO) and nu(CCC) stretching modes) interacting with acetaminophen have been analyzed. The predicted spectral changes have been critically discussed in comparison with IR absorption measurements of acetaminophen dissolved as a solute in ethanol or acetone CO2 expanded solutions. It is argued that the exchange-correlation contribution taken into account in DFT calculations is likely significant in determining the main IR spectral features of acetaminophen complexes formed with acetone or involving hydrogen-bonded as with ethanol.  相似文献   

13.
Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the roselite arsenate minerals of the roselite and fairfieldite subgroups of formula Ca(2)B(AsO(4))(2).2H(2)O (where B may be Co, Fe(2+), Mg, Mn, Ni and Zn). The Raman arsenate (AsO(4))(2-) stretching region shows strong differences between the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. In the infrared spectra complexity exists with multiple (AsO(4))(2-) antisymmetric stretching vibrations observed, indicating a reduction of the tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong Raman bands around 450 cm(-1) are assigned to nu(4) bending modes. Multiple bands in the 300-350 cm(-1) region assigned to nu(2) bending modes provide evidence of symmetry reduction of the arsenate anion. Three broad bands for roselite are found at 3450, 3208 and 3042 cm(-1) and are assigned to OH stretching bands. By using a Libowitzky empirical equation hydrogen bond distances of 2.75 and 2.67 A are estimated. Vibrational spectra enable the molecular structure of the roselite minerals to be determined and whilst similarities exist in the spectral patterns, sufficient differences exist to be able to determine the identification of the minerals.  相似文献   

14.
The Fourier transform infrared spectrum of tropolone(OH) vapor in the 1175-1700 cm(-1) region is reported at 0.0025 and 0.10 cm(-1) spectral resolutions. The 12 vibrational fundamentals in this region of rapidly rising vibrational state density are dominated by mixtures of the CC, CO, CCH, and COH internal coordinates. Estimates based on the measurement of sharp Q branch peaks are reported for 11 of the spectral doublet component separations DS(v) = |Delta(v) +/- Delta(0)|. Delta(0) = 0.974 cm(-1) is the known zero-point splitting, and three a(1) modes show tunneling splittings Delta(v) approximately Delta(0), four b(2) modes show splittings Delta(v) approximately 0.90Delta(0), and the remaining four modes show splittings Delta(v) falling 5-14% from Delta(0.) Significantly, the splitting for the nominal COH bending mode nu(8) (a(1)) is small, that is, 10% from Delta(0). Many of the vibrational excited states demonstrate strong anharmonic behavior, but there are only mild perturbations on the tautomerization mechanism driving Delta(0). The data suggest, especially for the higher frequency a(1) fundamentals, the onset of selective intramolecular vibrational energy redistribution processes that are fast on the time scale of the tautomerization process. These appear to delocalize and smooth out the topographical modifications of the zero-point potential energy surface that are anticipated to follow absorption of the nu(v) photon. Further, the spectra show the propensity for the Delta(v) splittings of b(2) and other complex vibrations to be damped relative to Delta(0).  相似文献   

15.
The FTIR spectra of pure NH and isotopically diluted (NH/ND and ND/NH) polycrystalline uracil and thymine were measured in the range 4000-400 cm(-1) at temperatures from 300 to 10K. For the first time, the essentially narrow bands corresponding to the uncoupled stretching (nu(1)) and out of plane bending (nu(4)) NH proton modes of uracil and thymine were observed in the solid phase. It was found that in the nu(4) region the spectra reveal more details on the H-bond interactions present in both solids than in the nu(1) range. The frequencies of the various bands observed in both spectral regions were used for estimation of the H-bond energy, using empirical correlations between this property and both the red shift of nu(1) and the blue shift of nu(4) that occur upon crystallization due to the establishment of the H-bonds. The results are compared with known thermodynamic, structural and theoretical data. The IR data also suggest that the H-bond networks of both crystals contain, besides the two NH...O=C bonds revealed by X-ray experiments, additional types of H-bonds, which do not show long range periodicity and, thus, cannot be detected by the conventional structural methods. The assignment of some other bands in the spectra of both substances was also reviewed.  相似文献   

16.
Raman spectroscopy at 298 and 77K has been used to study the mineral kamotoite-(Y), a uranyl rare earth carbonate mineral of formula Y(2)(UO(2))(4)(CO(3))(3)(OH)(8).10-11H(2)O. The mineral is characterised by two Raman bands at 1130.9 and 1124.6 cm(-1) assigned to the nu(1) symmetric stretching mode of the (CO(3))(2-) units, while those at 1170.4 and 862.3 cm(-1) (77K) to the deltaU-OH bending vibrations. The assignment of the two bands at 814.7 and 809.6 cm(-1) is difficult because of the potential overlap between the symmetric stretching modes of the (UO(2))(2+) units and the nu(2) bending modes of the (CO(3))(2-) units. Only a single band is observed in the 77K spectrum at 811.6 cm(-1). One possible assignment is that the band at 814.7 cm(-1) is attributable to the nu(1) symmetric stretching mode of the (UO(2))(2+) units and the second band at 809.6 cm(-1) is due to the nu(2) bending modes of the (CO(3))(2-) units. Bands observed at 584 and 547.3 cm(-1) are attributed to water librational modes. An intense band at 417.7 cm(-1) resolved into two components at 422.0 and 416.6 cm(-1) in the 77K spectrum is assigned to an Y(2)O(2) stretching vibration. Bands at 336.3, 286.4 and 231.6 cm(-1) are assigned to the nu(2) (UO(2))(2+) bending modes. U-O bond lengths in uranyl are calculated from the wavenumbers of the uranyl symmetric stretching vibrations. The presence of symmetrically distinct uranyl and carbonate units in the crystal structure of kamotoite-(Y) is assumed. Hydrogen-bonding network related to the presence of water molecules and hydroxyls is shortly discussed.  相似文献   

17.
Raman spectroscopy has been used to study the molecular structure of a series of selected uranyl silicate minerals including weeksite K2[(UO2)2(Si5O13)].H2O, soddyite [(UO2)2SiO4.2H2O] and haiweeite Ca[(UO2)2(Si5O12(OH)2](H2O)3 with UO2(2+)/SiO2 molar ratio 2:1 or 2:5. Raman spectra clearly show well resolved bands in the 750-800 cm(-1) region and in the 950-1000 cm(-1) region assigned to the nu1 modes of the (UO2)2+ units and to the (SiO4)4- tetrahedra. Soddyite is characterized by Raman bands at 828.0, 808.6 and 801.8 cm(-1), 909.6 and 898.0 cm(-1), and 268.2, 257.8 and 246.9 cm(-1), attributed to the nu1, nu3, and nu2 (delta) (UO2)2+, respectively. Coincidences of the nu1 (UO2)2+ and the nu1 (SiO4)4- is expected. Bands at 1082.2, 1071.2, 1036.3, 995.1 and 966.3 cm(-1) are attributed to the nu3 (SiO4)4-. Sets of Raman bands in the 200-300 cm(-1) region are assigned to nu2 (delta) (UO2)2+ and UO ligand vibrations. Multiple bands indicate the non-equivalence of the UO bonds and the lifting of the degeneracy of nu2 (delta) (UO2)2+ vibrations. The (SiO4)4- tetrahedral are characterized by bands in the 470-550 cm(-1) and in the 390-420 cm(-1) region. These bands are attributed to the nu4 and nu2 (SiO4)4- bending modes. The minerals show characteristic OH stretching bands in the 2900-3500 and 3600-3700 cm(-1).  相似文献   

18.
The electronic and infrared spectra of 2-fluoropyridine-methanol clusters were observed in a supersonic free jet. The structure of hydrogen-bonded clusters of 2-fluoropyridine with methanol was studied on the basis of the molecular orbital calculations. The IR spectra of 2-fluoropyridine-(CH3OH)n(n = 1-3) clusters were observed with a fluorescence-detected infrared depletion (FDIR) technique in the OH and CH stretching vibrational regions. The structures of the clusters are similar to those observed for 2-fluoropyridine-(H2O)n (n = 1-3) clusters. The existence of weak hydrogen bond interaction through aromatic hydrogen was observed in the IR spectra. The theoretical calculation also supports the result. The vibrational frequencies of CH bonds in CH3 group are affected by hydrogen bond formation although these bonds do not directly relate to the hydrogen bond interaction. The B3LYP/6-311 ++G(d,p) calculations reproduce well the vibrational frequency of the hydrogen-bonded OH stretching vibrations. However, the calculated frequency of CH stretching vibration could not reproduce the IR spectra because of anharmonic interaction with closely lying overtone or combination bands for nu3 and nu9 vibrations. The vibrational shift of nu2 vibration is reproduced well with molecular orbital calculations. The calculation also shows that the frequency shift of nu2 vibration is closely related to the CH bond length at the trans position against the OH bond in hydrogen-bonded methanol.  相似文献   

19.
The infrared low-temperature Ar-matrix spectra of 5-halouracils and unsubstituted uracil were measured and interpreted in terms of the spectra calculated at the DFT/B3PW91/6-311G level followed by a potential energy distribution (PED) analysis. For the PED analysis, the sets of halouracil mode definitions were constructed so that dissimilarities in the interpretations of the different spectra were minimized. Anharmonic frequency calculations enabled more light to be shed on the Fermi resonance (FR) phenomena occurring in the nu(C=O) stretching vibrations region. For each halouracil vibrational spectrum, several FRs manifest themselves in the nu(C=O) stretching vibrations region. We show that the most frequent components participating in these resonances are the nu(C(4)=O(10)) frequency, a beta(N-H) mode frequency, and a beta(C=O) mode frequency. The experimental nu(N-H) frequencies are reproduced by the calculated anharmonic frequencies better than by the scaled harmonic ones, and the nu(C=O) frequencies respond in the opposite manner. The experimental frequencies located below 1500 cm(-1) are reproduced equally well by the two kinds of calculations.  相似文献   

20.
A quasi-degenerate perturbation method with vibrational self-consistent field (VSCF) reference wavefunction is developed. It simultaneously accounts for strong anharmonic mode-mode coupling among a few states (static correlation) by a configuration interaction theory and for weak coupling with a vast number of the other states (dynamic correlation) by a perturbation theory. A general formula is derived based on the van Vleck perturbation theory. An algorithm that selects a compact set of the most important VSCF configurations which contribute to the static correlation is proposed and a scheme to limit the number of configurations considered for dynamic correlation is also implemented. This method reproduces the vibrational frequencies of CO2 and H2CO that are subject to the strongest anharmonic mode-mode coupling within 10 cm(-1) of vibrational configuration interaction results in a computational expense reduced by a factor of one to two orders of magnitude. The method also reproduces the infrared absorption of C6H6 in the CH stretching (nu12) frequency region, in which combination tones nu13nu16 and nu2nu13nu18 appear on account of an intensity borrowing from nu12via the anharmonic coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号