首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Polyhedron》1988,7(12):1067-1070
Anionic [Rh(diolefin)X2] species (X = Cl, Br) have been prepared and their reactions studied. The reactions with monodentate ligands led to neutral tetracoordinated complexes, and with N-donor bidentate ligands (Rh : LL = 2 : 1) gave Rh(X)(diolefin)(LL), [Rh(diolefin)(LL)]+[Rh(diolefin)X2], or [Rh(diolefin)(LL)]X compounds, depending on the nature of LL or X. Reactions with carbon monoxide involved diolefin displacement. A trichlorostannato complex was obtained from the [Rh(COD)Cl2] species. Reactions of [Rh(COD)Br]2 with bidentate N-donor ligands were also studied.  相似文献   

2.
Summary Cationic rhodium(I) complexes of the type [Rh(diolefin)(L-L)]ClO4 and [Rh(diolefin)L2]ClO4, (diolefin = 1,5-cyclooctadiene, 2,5-norbornadiene and tetrafluorobenzobarrelene; L-L = 2,2-biimidazole, 2,2-bibenzimidazole; L = pyrazole or imidazoles) are described. [Rh(CO)2(L-L)]-C1O4 complexes, which can be obtained by reaction of cyclooctadiene derivatives with CO, react with P-donor ligands in equimolar ratios to yield [Rh(CO)(P-donor)(L-L)]ClO4 monocarbonyl derivatives. The catalytic activity of some of these complexes is considered.  相似文献   

3.
Summary The reaction of [RhClY2]2 (Y2 = diolefin; Y = CO) with 3,3,5,5-tetramethyl-4,4-bipyrazole and 4,4-methylen-bis (3,5-dimethylpyrazole) (H2LL) leads to binuclear complexes of the type (H2LL) [RhClY2]2. The addition of triethylamine to the latter complexes gives polynuclear [(LL){RhY2}2]n derivatives. Related compounds of formula [(LL){RhX(PPh3)}2]n (X = CO or CS) are also reported.Part of this paper was presented at the VIIIth International Congress of Heterocyclic Chemistry which was held in Graz, Austria. August 1981.  相似文献   

4.
Summary The preparation and properties of cationic arenerhodium(I) complexes of general formula [Rh(diolefin)(6arene)]ClO4 (diolefin=1,5-cyclooctadiene, tetrafluorobenzobarrelene or trimethyltetrafluorobenzobarrelene; arene = biphenyl or diphenylmethane) are described. These complexes react with the solvated intermediate complex [Rh(diolefin)(Me2CO)x]ClO4 to give homobimetallic [(diolefin)Rh(Ph2CH2)Rh(diolefin)](ClO4)2 derivatives. New heterobimetallic complexes of the type [(diolefin)Rh(Ph2CH2)Cr(CO)3]ClO4 have been synthesized by reaction of Cr(CO)3(6-Ph2CH2) with the solvated complex [Rh(diolefin)(Me2CO)x]ClO4 or, alternatively by treatment of [Rh(diolefin)(6-arene)]ClO4 with the complex Cr(CO)3(6Me3B3N3Me3) in chloroform solution.  相似文献   

5.
Dinuclear rhodium complexes of the type [Rh2(C2O4)(diolefin)2] (diolefin)2  1,5-cyclooctadiene, 2,5-norbornadiene and tetrafluorobenzobarrelene) with bridging oxalate ligands have been obtained by reaction of [Rh(acac)(diolefin)] with oxalic acid (2: 1 mol ratio). The use of a 1 : 1 molar ratio affords [Rh(HC2O4)(COD)], that reacts with [Ir(acac)(COD)] yielding the heterodinuclear [(COD)Rh(C2O4)Ir(COD)] complex. Treatment of [Rh2(C2O4)(diolefin)2] complexes with phenanthroline type ligands leads to ionic complexes of formula [Rh(diolefin) (phen)][Rh(C2O4)(diolefin)]. Bubbling of carbon monoxide through solutions of the diolefin complexes leads to the formation of carbonylrhodium species of formula [Rh2(C2O4)(CO)2L2] (L = CO, PPh3t-BuNC) or [Rh(CO)2(phen)] - [Rh(C2O4)(CO)2]. Other related malonate complexes are also described.  相似文献   

6.
The preparation of cationic indazole (HIdz) rhodium(I) complexes of the types [(diolefin)Rh(HIdz)2]ClO4 and [(CO)2Rh(HIdz)2]ClO4 is described. Neutral binuclear rhodium(I) complexes of the type [Y2Rh(μ-Idz)]2 (Y2  COD, TFB, NBD, (CO)2 or (CO)(PPh3)) are obtained by treating the corresponding complexes [Y2RhCl]2 with indazole and organic or inorganic bases. The cationic mononuclear derivatives react with the solvated species [Y2Rh(acetone)x]ClO4 in the presence of triethylamine to give neutral binuclear complexes of the types [(CO)2Rh(μ-Idz)2Rh(diolefin)], [(Ph3P)(CO)Rh(μ-Idz)2Rh(diolefin)] and [(diolefin)Rh(μ-Idz)Rh(diolefin′)] (diolefin  COD, TFB or NBD; diolefin′  COD or TFB). Alternative methods for the synthesis of the binuclear complexes are also described.  相似文献   

7.
Summary Complexes of the [Rh(N-N)(CO)2][RhCl2(CO)2], [Rh(N-N)(CO)2]BF4 and Rh(N-N)(CO)2Cl types where (N-N) = 2,9-dimethyl-1,10-phenanthroline (Me2Phen), 4,7-diphenyl-1,10-phenanthroline (Ph2Phen), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Me22Ph2Phen) or 2,2-biquinoline (biq), have been prepared and investigated. Benzidine (benz) ando-tolidine (tol) also form complexes of the first type. The complexes of the first two types behave as 11 electrolytes. While Ph2Phen forms the four coordinate monocarbonyl Rh(Ph2Phen)(CO)Cl complex, benzo(f)-quinoline (Q) yields the Rh(CO)2 (Q)Cl compound. Triphenyl-phosphine and triphenylarsine react with the above complexes to form the well knowntrans-Rh(CO)ClL2 where L = PPh3 or AsPh3. The i.r. and u.v.-visible spectra of the compounds are discussed.  相似文献   

8.
The complexes Et4N[Rh(SnCl3)2(diolefin)(PR3)] (diolefin = COD or NBD) have been isolated and their reactions studied. Reaction with arylic tertiary phosphines led to SnCl3 displacement and isolation of neutral pentacoordinated Rh(SnCl3)(diolefin)(PR3)2 complexes. Reaction with carbon monoxide involved diolefin displacement when the diolefin was COD, thus giving Et4N[Rh(SnCl3)2(CO)2(PR3)] compounds, but SnCl3 displacement when it was NBD, thus yielding Rh(SnCl3)(CO)(NBD)(PR3) complexes. The complexes [Rh(diolefin)Cl]2 were found to react with triarylphosphines in the presence of SnCl2 and with CO bubbling through the solution to give Rh(SnCl3)(CO)(NBD)(PR3) when the diolefin was NBD but Rh(Cl)(CO)(PR3)2 when the diolefin was COD.  相似文献   

9.
Summary Rhodium(I) and iridium(I) mixed complexes of the formulae [M(diolefin)LL]ClO4, [M(diolefin)L2L]ClO4, [(diolefin)LIr(-L)2IrL(diolefin)](ClO4)2, [(diolefin)LM(-L-L)ML'(diolefin)](ClO4)2, [(diolefin)Rh{-(L-L)}2Rh(PPh3)2](ClO4)2 and [(diolefin)LIr{-(L-L)}2IrL (diolefin)](C1O4)2, (L=monodentate sulphur ligand, L-L=bidentate sulphur ligand, L=group Vb ligand; M=Rh, diolefin=1,5-cyclooctadiene (COD) or 2,5-norbornadiene (NBD); M=Ir, diolefin=COD) are described.Author to whom all correspondence should be directed.  相似文献   

10.
Summary The carbonyl ligands in the Rh1 complexes Rh(L-L)(CO)2 [L-L=anthranilate (AA) orN-phenylanthranilate(FA) ions] are replaced by P(OPh)3 to form the mono-or disubstituted products, Rh(L-L)(CO)[P(OPh)3] and Rh(L-L)[P(OPh)3]2 respectively depending on the [P(OPh)3]/[Rh] molar ratio, at room temperature and in air. Under argon at [P(OPh)3]/[Rh]4 theortho-metallated Rh1 complex Rh[P(OPh)3]3[P(OC6H4)-OPh)2] is formed. The new route forortho-metallated Rh1 complex synthesis is described.The Rh(AA)(CO)2 complex was used as a catalyst precursor in hydroformylation of olefins.  相似文献   

11.
The reaction of LAuIn (L = P(C6H5)3, P(2-MeC6H4)3 or P(4-MeC6H4)3; In = indolyl group) with the solvated complexes [(diolefin)Rh(Me2CO)x]ClO4 gives the novel heterometallic complexes [(diolefin)Rh(μ-In)AuL]ClO4. The mononuclear arene derivatives [(diolefin)Rh(η6-HIn)]ClO4 react with methanolic KOH to give the binuclear complexes [(diolefin)Rh(μ-OMe)]2, while [(COD)Rh(η6-HIn)]ClO4 reacts with KOH in water/acetone to give the hydroxo-bridged complex [(COD)Rh(μ-OH)]2.  相似文献   

12.
Summary The thiolato-bridged dinuclear compounds [Rh(-SR)-(COD)]2, where R=p-C6HF4 (1),p-C6H4F (2) and CF3 (3), are obtained from the chloro-bridged analogue by ligand exchange.Compound (1) crystallizes in the space group P1 with a=9.740(3)Å, b=11.642(4)Å, c=13.997(6)Å, =103.87(3)°, =106.98(3)° and =105.10(2)°; z=2. In this dinuclear molecule both Rh atoms have a square planar coordination sharing one edge, namely the two sulphur bridging atoms. The Rh—Rh separation of 2.96 Å is consistent with at most a very weak metal-metal interaction. Upon addition of CO the dimeric [Rh(-SR)(CO)2]2 (4), (5) and (6) are obtained, but addition of PPh3 affords the monomeric species [Rh(SR)(PPh3)-(COD)] (7), (8) and (9). Reactions of the dimeric tetracarbonyl derivatives with PPh3 vary with the nature of R; [Rh(-SR)(PPh3)(CO)]2 is obtained when R=p-C6H4F (10) and CF3 (11) but monomeric [Rh(SR)-(PPh3)(CO)2] (12) is produced when R=p-C6HF4. The latter mononuclear compounds, with R=p-C6H4F (13) and CF3 (14), are also formed by reaction of [Rh(SR)-(PPh3)(COD)] with CO.  相似文献   

13.
Summary Rhodium(I) tropolonate and salicylaldehydate complexes of the general formula Rh(A)(diolefin) (A = tropolonate, -iso-propyltropolonate, -methyltropolonate and salicylaldehydate; diolefin = 1,5-cyclooctadiene, 2,5-norbornadiene and tetrafluorobenzobarrelene) have been prepared by several routes. The ability of Rh(trop)(COD) to function as an intermediate for the synthesis of other neutral and cationic rhodium(I) complexes has been studied and its hydroformylation activity has been explored briefly.  相似文献   

14.
The synthesis and properties of rhodium(I) complexes of formulae [“RhCl(diolefin)”2(L)] (or [Rh(Cl(diolefin)(L)]), and [Rh(diolefin)(L)]n(ClO4)n are reported. These complexes react with carbon monoxide to yield the related carbonyl derivatives. Ligands used were pyridazine, 4,6-dimethyl-pyrimidine, 4,6-bis(3,5-dimethylpyrazol-1-yl)pyrimidine, 3,6-bis(3,5-dimethylpyrazol-1-yl)pyridazine and 3-(3,5-dimethyl-pyrazol-1-yl)-6-chloropyridazine. Related iridium(I) and gold(I) compounds are also reported.  相似文献   

15.
Summary trans-Methyliodo-8-hydroxyquinolinatocarbonyltriphenylphosphinerhodium(III) was synthesised by means of the oxidative addition of MeI to 8-hydroxyquinolinatocarbonyltriphenylphosphinerhodium(I). The compound crystallizes in the triclinic space group, , witha=13.423(5),b=14.500(3),c=17.562(5)Å, =68.30(2), =75.15(2), =86.31(2)°. The final R value was 0.052 for the 11302 observed reflections. There are two [Rh(ox)(CO)(PPh3)(Me)(I)] and one Me2CO molecule in the asymmetric unit. The rhodium atom has an octahedral configuration with the methyl and iodide ligands in thetrans positions. This structure determination showed that only the alkyl complex is formed during the oxidative addition reaction and thattrans-addition of MeI occurs.  相似文献   

16.
Treatment of [[M(mu-Cl)(diolefin)](2)] with the lithium salts of primary and secondary amines (LiNRR') in diethyl ether affords the complexes [[M(mu-NRR')(diolefin)](2)] (M=Rh, Ir; diolefin=1,5-cyclooctadiene (cod), tetrafluorobenzobarrelene (tfb); R'=H, R=tBu, Ph, 4-MeC(6)H(4); R=R'=Ph, 4-MeC(6)H(4)). Mixed-bridged chloro/amido complexes are intermediates in these syntheses, two of which, [[Rh(cod)](2)(mu-NHR)(mu-Cl)] (R=tBu, 4-MeC(6)H(4)), have been isolated. Replacement of the diolefin ligands by carbon monoxide or tert-butyl isocyanide in selected compounds takes place with retention of the binuclear structure to give the corresponding complexes [[M(mu-4-HNC(6)H(4)Me)(CO)(2)](2)], [[Rh(mu-4-HNC(6)H(4)Me)(CNtBu)(2)](2)] (12), and [[Rh(mu-NPh(2))(CNtBu)(2)](2)] (13). Single-crystal X-ray diffraction analyses of the complexes [[Rh(mu-NRR')(cod)](2)] (R'=H, R=4-MeC(6)H(4) (3); R=R'=4-MeC(6)H(4) (5)), 12, and 13 have shown that the conformation of the "RhN(2)Rh" four-membered metallacycle is planar in 5 and folded in 3, 12, and 13. The complexes with primary amides, 3 and 12, were found to exist as the syn,endo stereoisomers. The fluxionality of the complexes with secondary amides is due to rotation of the aromatic substituents about the N-C(ipso) bond and, in the case of 13, to the inversion of the "RhN(2)Rh" metallacycle as well. The complexes [[M(mu-NHR)(cod)](2)] (R=Ph, 4-MeC(6)H(4)) were found to exist as isomeric mixtures in solution, the syn/anti ratio being 2:3 for the rhodium derivatives and 1:1 for their iridium counterparts. Again, the motion detected was due to rotation of the aromatic substituents, and could be frozen only in the case of the syn isomers. The complex [[Rh(mu-NHtBu)(cod)](2)] with aliphatic amido ligands was found to be the anti folded isomer and proved to be nonfluxional. The most common conformation of the "RhN(2)Rh" metallacycle in these compounds is folded, and the preferred configuration varies from syn for the less encumbered compounds to anti on increasing the bulkiness of the bridging and ancillary ligands.  相似文献   

17.
Summary The dependence of the charge-transfer frequency for [Mo(CO)4(btz)], btz = 2,2-bi(4H-5,6-dihydrothiazine), on solvent is described, and the solvatochromic behaviour of this compound compared with that of other [Mo(CO)4(LL)] species, with LL = 2,2-bipyrimidine or 2,2-bipyridine, and of iron(II) analogues [Fe(btz)2(CN)2] and [Fe(bipy)2(CN)2]. Kinetics of solvolysis (k, H, S) are reported for [Mo(CO)4(btz)] in methanol, acetonitrile, and dimethyl sulphoxide. These kinetic results are analysed into initial state and transition state contributions. A parallel analysis of the solvatochromic results for [Mo(CO)4(btz)] into ground state and excited state solvation contributions is compared with similar analyses for the solvatochromic organic compoundsp-nitroanisole and dimethylindoaniline.  相似文献   

18.
Summary Reinvestigation of the reaction of M(CO)6 (M=Cr, Mo or W) with KOH has been found to provide a very convenient route to the K[M2H(CO)10] compounds (M=Cr, Mo or W). The reaction involving Cr(CO)6 yields new potassium derivatives containing [Cr2(CO)10]2– and [HCr(CO)5] species; also K[Cr2D(CO)10] is produced from the Cr(CO)6/KOD interaction in C2D5OD. The reaction involving two different group 6 metal carbonyls yields [MM(CO)10(-H)] (MM=CrMo, CrW or WMo) species as their K+ and PPN+ [bis(triphenylphosphine)iminium] salts.  相似文献   

19.
The reaction of [Rh4(mu-PyS2)2(cod)4] (PyS2 = 2,6-pyridinedithiolate, cod = 1,5-cyclooctadiene) with CF3SO3Me gave the cationic complex [Rh(4)(mu-PyS(2)Me)(2)(cod)4][CF3SO3]2 (1) with two 6-(thiomethyl)pyridine-2-thiolate bridging ligands from the attack of Me+ at the terminal sulfur atoms of the starting material. Under identical conditions [Rh4(mu-PyS2)2(tfbb)4] (tfbb = tetrafluorobenzobarrelene) reacted with CF3SO3Me to give the mixed-ligand complex [Rh(4)(mu-PyS2)(mu-PyS2Me)(tfbb)4][CF3SO3] 2. The nucleophilicity of the bridging ligands in the complexes [Rh4(mu-PyS2)2(diolefin)4] was exploited to prepare heteropolynuclear species. Reactions with [Au(PPh3)(Me2CO)][ClO4] gave the hexanuclear complexes [(PPh3)2Au2Rh4(mu-PyS2)2(diolefin)4][ClO4]2 (diolefin = cod (3), tfbb (4)). The structure of 4, solved by X-ray diffraction methods, showed the coordination of the [Au(PPh3)]+ fragments to the peripheral sulfur atoms in [Rh4(mu-PyS2)2(diolefin)4] along with their interaction with the neighbor rhodium atoms. Neutral coordination polymers of formula [ClMRh4(mu-PyS2)2(diolefin)4]n (M = Cu (5, 6), Au (7)) result from the self-assembly of alternating [Rh4(mu-PyS2)2(diolefin)4] ([Rh4]) blocks and MCl linkers. The formation of the infinite polymetallic chains was found to be chiroselective for M = Cu; one particular chain contains exclusively homochiral [Rh4] complexes. Cationic heterometallic coordination polymers of formula [MRh4(mu-PyS2)2(diolefin)4]n[BF4]n (M = Ag (8, 9), Cu (10, 11)) and [Rh5(mu-PyS2)2(diolefin)5]n[BF4]n (12, 13) result from the reactions of [Rh4] with [Cu(CH2CN)4]BF4, AgBF4, and [Rh(diolefin)(Me2CO)2]BF4, respectively. The heterometallic coordination polymers exhibit a weak electric conductivity in the solid state in the range (1.2-2.8) x 10(-7) S cm(-1).  相似文献   

20.
The rhodium complex trans-[Rh(CO)(Hdpf-κP)(dpf-κ2O,P)] (1), (Hdpf = 1′-(diphenylphosphino)ferrocenecarboxylic acid) was used as an efficient and recyclable catalyst for 1-hexene hydroformylation producing ca. 80% of aldehydes at 10 atm CO/H2 and 80 °C. After the reaction, unchanged complex 1 was separated from the reaction mixture and used again three times with the same catalytic activity. The effect of modifying ligands, phosphines and phosphites, on the reactivity of 1 was investigated. The active catalytic systems containing 1 or trans-[Rh(CO)(L)(dpf-κ2O,P)] (2) were formed in situ from acetylacetonato rhodium(I) precursors [Rh(CO)2(acac)] (3) or [RhL(CO)(acac)] (4) and Hdpf or Medpf (L = phosphine, Medpf = methyl ester of Hdpf).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号