首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MOF-199@PVDF composite membranes are prepared by blending with different amounts of ultrasonic synthesized MOF-199 nanomaterials for improving the pure water flux (PWF) and achieving better antifouling and antibacterial performance. The membrane morphology, elemental composition, and surface properties are analyzed by various means of characterizations, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, and water contact angle measurements. The performance of the modified membranes is also determined from the perspective of the PWF, bovine serum albumin rejection, as well as antifouling and antibacterial properties. Due to the variation in the viscosity of dope solution, the composite membranes possess remarkably different morphology, and the M5 membrane, which exhibited a sponge-like structure, the largest surface pore size, and the highest porosity, shows the highest PWF, reaching up to 185.05 L/m2h. Moreover, with the incorporation of MOF-199 nanocrystals, the antifouling property, together with the antibacterial property, toward both gram-negative bacteria and gram-positive bacteria, based on M5 and M7 membranes, increases dramatically compared with the pristine polyvinylidene fluoride membrane. In addition, the long-term permeation performance and copper leakage of the membrane are investigated. As a result, the composite membrane, M5, shows great potential in real water treatment.  相似文献   

2.
Hyperbranched polyester-grafted poly(vinylidene fluoride) (HBPE-g-PVDF) was synthesized and used as additive in preparation of PVDF blend membranes. HBPE-g-PVDF copolymer was characterized with FTIR and TGA techniques. The prepared membranes were also characterized with SEM, AFM and contact angle measurement. The performance of prepared membranes as nanofiltration membrane was studied by pure water flux (PWF), salt rejection, dynamic and static fouling tests. The results showed that hydrophilicity of prepared membranes greatly increased after blending, and their pore size and pore size distribution and so PWF of blend membranes increased.  相似文献   

3.
Hydrous manganese dioxide (HMO) nanoparticles incorporated cellulose acetate (CA) composite ultrafiltration (UF) membranes are prepared with the aim of improving the water permeation and BSA contaminant removal. The HMO nanoparticles are synthesized from manganese ion and characterized by FT‐IR, XRD, and FESEM. The effect of variation of HMO on CA membranes is probed using FT‐IR, EDAX, contact angle, SEM, and AFM analysis to demonstrate their chemical functionality, hydrophilicity, and morphology. CA/HMO membranes are showing the enhancement in pure water flux (PWF), water uptake, porosity, hydrophilicity, fouling resistance, BSA rejection, and flux recovery ratio (FRR). CA‐1 membrane displayed higher PWF (143.6 Lm2h?1), BSA rejection (95.9%), irreversible fouling (93.3%), and FRR (93.3%). Overall results confirmed that the CA/HMO nanocomposite UF membranes overcome the bottlenecks and shows potential for water treatment applications.  相似文献   

4.
Flat sheet asymmetric membranes were fabricated with homogeneous solution of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) using N-methyl-2-pyrrolidone (NMP) as solvent via phase inversion method. PEGME (Poly ethylene glycol methyl ether) (Mn 5000) blend Humic Acid (HA), of different mole ratio was used as additive. Characterization of the membranes was done by Field emission scanning electron microscope (FESEM), Fourier Transform Infrared (FTIR) spectroscopy, Atomic force microscopy (AFM) and Differential scanning calorimetry (DSC) studies. Liquid-liquid displacement porosimetry (LLDP) study evaluated the morphological parameters, average pore size and pore size distribution. Bovine serum albumin (BSA) (MW - 68,000 Da) was used to study the antifouling effect and pore blocking mechanism of the membranes. The pure water flux (PWF), solute rejection and flux recovery ratio drastically increases for the PEGME blended HA membranes whereas the water contact angle decreases significantly. The pH responsiveness character of the prepared membranes altered the hydraulic permeability and rejection % at different pH. Finally, optimization of the variables contributing towards the PWF and BSA rejection of the desired membrane was performed using Design expert software 9.0 TRIAL through ANOVA (analysis of variance) using the combination of response surface methodology (RSM) and central composite design (CCD).  相似文献   

5.
用晶种涂层二次生长成膜法研究了在含水量不同的澄清溶液合成体系中NaA型沸石膜的生长及沸石膜厚度的控制合成.用SEM,TEM和XRD表征手段分析了沸石膜的形成过程和微结构.在载体表面不涂晶种而直接合成则不易形成连续沸石膜;用晶种涂层二次法可以很容易形成均匀的连续膜.合成液中水量的高低强烈影响沸石膜的生长速率、形成结构和膜的厚度.在高水量(水硅摩尔比为2000)的合成体系中沸石生长速率慢,膜主要通过晶种层中的晶粒长大,交织成膜,且膜只有一层结构;而在低水量(水硅摩尔比为750)的合成体系中沸石生长速率快,膜则通过晶种层表面晶粒向外生长、交织成膜,而膜具有两层结构.通过调变合成液的水量可有效地控制沸石膜层的厚度,并能制得非常均匀、连续的膜.  相似文献   

6.
The flat sheet polyethersulfone (PES) and poly(vinylidene fluoride) (PVDF) membranes were prepared by immersion precipitation technique. The influence of hot air and water treatment on morphology and performance of membranes were investigated. The membranes were characterized by AFM, SEM, cross-flow filtration of milk and fouling analysis. The PES membrane turns to a denser structure with thick skin layer by air treatment at various temperatures during different times. This diminishes the pure water flux (PWF). However the milk permeation flux (MPF) was considerably improved at 100 °C air treatment for 20 min with no change in protein rejection. The smooth surface and slight decrease in surface pore size for air treated PES membrane at 100 °C compared to untreated membrane may cause this behavior for the membrane. The water treatment of PES membranes at 55 and 75 °C declines the PWF and MPF and increases the protein rejection. This is due to slight decrease in membrane surface pore size. The treatment of PES membrane with water at higher temperature results in a porous structure with superior performance. The fouling analysis of 20 min treated membrane indicates that the surface properties of 100 °C air treated and 95 °C water treated PES membranes are improved compared to untreated membrane. The SEM observation depicts that the morphology of air and water treated PVDF membranes was denser and smoother with increasing the heat treatment temperature. The 20 min air treated PVDF membranes at 100 °C and water treated at 95 °C exhibited the highest performance and antifouling properties.  相似文献   

7.
A durable superhydrophobic surface with low water sliding angle (SA) and high water contact angle (CA) was obtained by electrospinning poly (vinylidene fluoride) (PVDF) which was mixed with epoxy-siloxane modified SiO(2) nanoparticles. To increase the roughness, modified SiO(2) nanoparticles were introduced into PVDF precursor solution. Then in the electrospinning process, nano-sized SiO(2) particles irregularly inlayed (it could also be regard as self-assembly) in the surface of the micro-sized PVDF mini-islands so as to form a dual-scale structure. This structure was responsible for the superhydrophobicity and self-cleaning property. In addition, epoxy-siloxane copolymer was used to modify the surface of SiO(2) nanoparticles so that the SiO(2) nanoparticles could stick to the surface of the micro-sized PVDF mini-islands. Through the underwater immersion test, the SiO(2) nanoparticles cannot be separated from PVDF easily so as to achieve the effect of durability. We chiefly explore the surface wettability and the relationship between the mass ratio of modified SiO(2) nanoparticles/PVDF and the CA, SA of electrospun mat. As the content of modified SiO(2) nanoparticles increased, the value of CA increased, ranging from 145.6° to 161.2°, and the water SA decreased to 2.17°, apparently indicating that the membrane we fabricated has a perfect effect of superhydrophobicity.  相似文献   

8.
其鲁 《高分子科学》2006,(2):213-220
A copolymer of poly(acrylonitrile-co-styrene) (SAN) was synthesized via an emulsion polymerization method. Novel polymer electrolyte membranes cast from the blends of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), SAN and fumed silica (SiO2) are microporous and can be used in polymer lithium-ion batteries. The membrane shows excellent characteristics such as high ionic conductivity and good mechanical strength when the mass ratio between SAN and PVDF-HFP and SiO2 is 3.5/31.5/5. The ionic conductivity of the membrane soaked in a liquid electrolyte of 1 mol/L LiPF6/EC/DMC/DEC is 4.9×10-3 S cm-1 at 25℃. The membrane is electrochemical stable up to 5.5 V versus Li /Li in the liquid electrolyte. The influences of SiO2 content on the porosity and mechanical strength of the membranes were studied. Polymer lithium-ion batteries based on the membranes were assembled and their performances were also studied.  相似文献   

9.
Polymeric blend ultrafiltration membranes based on cellulose acetate and polysulfone were prepared by phase inversion technique in presence of different additive concentrations, polyvinylpyrrolidone, and characterized in terms of compaction time, pure water flux (PWF), water content, membrane resistance and scanning electron microscopy (SEM). The blend membranes were subjected to separation of proteins and heavy metal ions using polyethylenimine as a complexing agent and the results were discussed. The molecular weight cut off of blend membranes was also reported.  相似文献   

10.
In this work,four samples containing different contents of fumed SiO2 were prepared to improve the pore size distribution and various properties of βnucleated isotatic polypropylene (β-iPP) biaxial membrane used for lithium-ion battery separator.The wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) results show that the fumed SiO2 promotes the formation of r-crystal slightly and narrows down the thickness distribution of β-lamellae;meanwhile,evenly distributed SiO2 within β-iPP can be inspected by scanning electron microscopy (SEM).Moreover,further detailed characterization of morphological evolutions during biaxial stretching by tensile testing and SEM manifests that SiO2 can strengthen β-iPP and make the samples deform more homogeneously,resulting in a gradually elaborate and finer oriented microfibril structure after longitudinal stretching,in which more uniform defects distribute between fibrils and restrain the formation of coarse fibrils effectively.Therefore,more superior microporous structure emerges with the addition of SiO2,accompanied by narrower pore size distribution and better connectivity between microvoids,which is confirmed by mercury porosimeter and diminished Gurley value.Moreover,the lower thermal shrinkage,decreased shrinkage rate and suppressed porosity reduction indicate that fumed SiO2 improves thermal and dimensional stability of membrane dramatically.Furthermore,due to the excellent wettability of SiO2 with electrolyte,the microporous membranes doped with SiO2 have higher electrolyte uptake,even after heat treatment at elevated temperature.  相似文献   

11.
以偏二氯乙烯-氯乙烯共聚物[P(VDC-co-VC)]为成膜聚合物, 邻苯二甲酸二甲酯(DMP)为稀释剂, 采用热致相分离(TIPS)法制备了具有多孔结构的P(VDC-co-VC)膜. 通过聚合物-稀释剂二元体系相图、 场发射扫描电镜(FESEM)、 差示扫描量热仪(DSC)、 X射线衍射(XRD)、 原子力显微镜(AFM)、 纯水通量、 接触角、 孔径及其分布、 截留率及力学性能等研究了聚合物含量对P(VDC-co-VC)多孔膜结构和性能的影响. 结果表明, P(VDC-co-VC)-DMP二元体系成膜过程以液-液(L-L)分相为主, 随着聚合物含量增加, 膜的横截面由类花瓣状结构向胞腔状结构转变, 膜的孔连通性降低, 结构变得较为致密, 同时膜上表面孔隙率降低, 粗糙度增大. L-L分相时间和聚合物含量的变化, 导致膜结晶度先降低后增大. 聚合物含量的增加使膜上表面接触角、 断裂强度及蛋白截留率增加, 但膜的平均孔径、 孔隙率及纯水通量先增加后减小. 当聚合物质量分数为30%时, 所得膜通透性较优, 断裂强度可达7.5 MPa.  相似文献   

12.
The crystallization behavior of SiO2-TiO2 ceramics derived from titanosiloxanes was investigated in relation to the structure of the precursor and the pyrolysis temperature. The titanosiloxanes, [Si(OBut)2OTi(acac) 2O]2, [(ButO)3SiO] 2Ti (OPri)2, and [(ButO)3SiO] 3Ti(OPri), were pyrolyzed in an air atmosphere to form SiO2-TiO2 ceramics which crystallized to anatase at 600–650°C, 700–750°C, and 800–850°C, respectively. The crystallization temperature decreased with increased titanium content of the precursor. The average crystallite size of anatase increased with increased pyrolysis temperature and the titanium content. The crystallization temperature and the crystallite size for SiO2-TiO2 ceramics is controlled by the precursor structure, which may enable control of the physical properties of the ceramic materials.  相似文献   

13.
A novel thin-film composite (TFC) seawater reverse osmosis membrane was developed by the interfacial polymerization of 5-chloroformyloxyisophthaloyl chloride (CFIC) and metaphenylenediamine (MPD) on the polysulphone supporting membrane. The performance of the TFC membrane was optimized by studying the preparation parameters, which included the reaction time, pH of the aqueous-MPD solution, monomer CFIC concentration, additive isopropyl alcohol content in aqueous solution, curing temperature and time. The reverse osmosis performance of the resulting membrane was evaluated through permeation experiment with synthetic seawater, and the structure of the novel membrane was characterized by using SEM, AFM and XPS. Furthermore, the separation properties of the TFC membrane were tested by examining the reverse osmosis performances of various conditions, the boron rejection performance and the long-term stability. The results show that the desired TFC seawater reverse osmosis membrane has a typical salt rejection of 99.4% and a flux of about 35 L/m2 h for a feed aqueous solution containing 3.5 wt.% NaCl at 5.5 MPa, and an attractive boron rejection of more than 92% at natural pH of 7–8; that the novel seawater reverse osmosis membrane appears to comprise a thicker, smoother and less cross-linking film structure. Additionally, the TFC membrane exhibits good long-term stability.  相似文献   

14.
成膜条件对聚醚砜超滤膜性能和结构的影响   总被引:4,自引:2,他引:2  
以聚醚砜(PES)为膜材,聚乙二醇600(PEG600)为添加剂,N,N-二甲基甲酰胺(DMF)为溶剂,纯水为凝固浴,用相转化法制备聚醚砜超滤膜.详细探讨了PES浓度、添加剂含量、凝固浴温度对膜性能和结构的影响规律,确定了制备高水通量、高截留率聚醚砜超滤膜的最佳工艺条件.  相似文献   

15.
光固化环氧丙烯酸酯/SiO2杂化材料的研究   总被引:6,自引:0,他引:6  
用FTIR、SEM、DSC和TGA表征了光固化环氧丙烯酸酯/SiO2杂化材料[(EA-TMSPM)/SiO2],研究了盐酸、γ-甲基丙烯酰氧丙基三甲氧基硅烷(TMSPM)和无机物浓度对(EA-TMSPM)/SiO2结构与性能的影响。结果表明,无机物浓度高的(EA-TMSPM)/SiO2杂化体系中SiO2粒子尺寸略大于无机物浓度低的体系;盐酸和无机物浓度的增加,都可以增强杂化材料的耐磨性。  相似文献   

16.
A capsule catalyst for isoparaffin synthesis based on Fischer-Tropsch reaction was designed by coating a H-ZSM-5 membrane onto the surface of the pre-shaped Co/SiO(2) pellet. Morphological and chemical analysis showed that the capsule catalyst had a core-shell structure. A compact, integral shell of H-ZSM-5 crystallized firmly on the Co/SiO(2) substrate without crack. Syngas passed through the zeolite membrane to reach the Co/SiO(2) catalyst to be converted, and all hydrocarbons formed with straight chain structure must enter the zeolite channels to undergo hydrocracking as well as isomerization in this tailor-made confined reaction environment. A narrow, anti-Anderson-Schultz-Flory law product distribution was observed on these capsule catalysts. Contrary to a mechanical mixture of H-ZSM-5 and Co/SiO(2), C(10+) hydrocarbons were suppressed completely on this novel capsule catalyst, and the selectivity of middle isoparaffins was considerably improved. The carbon number distribution of the products depended on the thickness of the zeolite membrane, and it was possible to selectively synthesize specified distillates, such as gasoline-range, or heavier hydrocarbons from syngas directly, by simply adjusting the thickness of the zeolite membrane of the capsule catalyst. This kind of capsule catalysts can be extended to various consecutive reaction systems as the shell and core components are independent catalysts for different reactions. At the same time, shape selectivity and space-confined effects can be expected for the reactant, intermediates and product of the sequential reactions.  相似文献   

17.
New fouling resistance and stimulus–responsive nanofiltration membranes were fabricated by adding photochromic spiropyran (SPO) and spironaphthoxazine (SNO) nanofillers to the polyethersulfone (PES) matrix via the phase inversion method. The effect of SPO and SNO, as novel photoresponsive molecule nanofillers, were evaluated in terms of membrane morphology, porosity, wettability, pure water flux (PWF), antifouling resistance, and stimulus–responsive properties. All the modified membranes indicated better performance compared to the bare PES. The membrane PWF was notably enhanced from 7.7 kg/m2h for the bare PES up to 18.68 and 20.58 kg/m2h for the 0.1 wt.% SPO and SNO blended membranes, respectively. Also, the 0.1 wt.% of SNO-based PES membrane indicated the best flux recovery ratio compared to the other membranes. The photo stimulus–responsive assessment showed a color change for both SPO and SNO photochromic in membranes. In the case of variable effect investigation, the response surface methodology at three levels (pressure: 4, 5, 6 bar and flow rate: 50, 100, and 150 L/h) was applied. A suitable flux (23.39 kg/m2 h) and high removal efficiency (more than 90%) was achieved at optimum conditions. Also, the modified membranes by photochromic materials were sensitive to environmental variables such as acidic and alkaline conditions by changing their color.  相似文献   

18.
在无机SiO2纳米粒子存在下的苯丙乳液共聚合   总被引:18,自引:0,他引:18  
研究了在无机SiO2纳米粒子存在下的苯丙乳液共聚合.选择了能使苯丙乳液稳定存在的乳化剂体系,研究了温度和SiO2的加入对聚合过程转化率的影响,结果表明,SiO2的加入对聚合过程有阻聚作用,使单体的转化率降低.SEM照片证明SiO2粒子已经进入苯丙乳液粒子中,而且SiO2的加入对乳液制成的膜断面形态有一定影响.实验发现在无机SiO2纳米粒子存在下,苯丙乳液共聚合时有较多残渣出现,对此通过改进乳液聚合进行了有效地改善.同时对制成的复合材料进行了力学性能和热学性能的测定.  相似文献   

19.
Cu(OH)2 nanowires were prepared and incorporated into poly(vinylidene fluoride) (PVDF) to fabricate Cu(OH)2-PVDF ultrafiltration (UF) membrane via immersion precipitation phase inversion process.The effect of Cu(OH)2 nanowires on the morphology of membranes was investigated by X-ray photoelectron spectroscopy (XPS),Fourier transform infrared (FTIR) spectroscopy,atomic force microscopy (AFM),scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements.The results showed that all the Cu(OH)2-PVDF membranes had wider fingerlike pore structure and better hydrophilicity,smoother surface than pristine PVDF membrane due to the incorporation of Cu(OH)2 nanowires.In addition,water flux and bovine serum albumin (BSA) rejection were also measured to investigate the filtration performance of membranes.The results indicated that all the Cu(OH)2-PVDF membranes had high water flux,outstanding BSA rejection and excellent antifouling properties.It is worth mentioning that the optimized performance could be obtained when the Cu(OH)2 nanowires content reached 1.2 wt%.Furthermore,the membrane with 1.2 wt% Cu(OH)2 nanowires showed outstanding oil-water emulsion separation capability.  相似文献   

20.
C(膜)/Si(SiO2 )(纳米微粒)/C(膜)热处理的形态及结构分析   总被引:1,自引:0,他引:1  
用直流辉光溅射+真空镀膜法制备了一种新型结构的硅基纳米发光材料- C(膜)/Si(SiO2)(纳米微粒)/C(膜)夹层膜,并对其进行了退火处理.用TEM、 SEM、 XRD和XPS对其进行了形态结构分析.TEM观察表明: Si(SiO2)纳米微粒基本呈球形,粒径在30 nm左右.SEM观察表明: 夹层膜样品总厚度约为50 μm,膜表面比较平整、致密.400℃退火后,样品表面变得凹凸不平,出现孔状结构; 650℃退火后,样品表面最平整、致密且颗粒均匀.XRD分析表明:制备出的夹层膜主要由SiO2和Si组成,在C原子的还原作用和氧气的氧化作用的共同作用下, SiO2和Si的含量随加热温度的升高而呈现交替变化: 400℃时, C的还原作用占主导地位, SiO2几乎全部被还原成了Si,此时Si含量最高; 400~650℃时,氧化作用占主导地位, Si又被氧化成SiO2, Si含量降低, SiO2含量逐渐上升,在650℃达到最高.XPS分析表明: 在加热过程中, C原子逐渐扩散进入Si(SiO2)微粒层,在650℃与Si反应生成了新的SiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号