首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Baho N  Zargarian D 《Inorganic chemistry》2007,46(18):7621-7632
The reaction of NiBr2 with the bidentate ligand diphenyl(dipyrazolyl)methane (dpdpm) gives the pentacoordinated complexes [(dpdpm)Ni(mu-Br)Br]2 (1), [(dpdpm)NiBr2(H2O)] (2a), and [(dpdpm)NiBr(H2O)2]Br (2b), or the octahedral complexes [(dpdpm)NiBr(H2O)2(CH3CN)]Br (3), [(dpdpm)2NiBr2] (4), and [(dpdpm)2NiBr(H2O)]Br (5). All of these complexes are paramagnetic, both in the solid state and in solution, and have been characterized by spectroscopic (IR, NMR, and UV-vis-NIR) and X-ray diffraction studies. The unoccupied coordination site in the pentacoordinated compounds allows long-range interactions, in the solid state, between the Ni center and a Ph substituent of the dpdpm ligand. These weak interactions are replaced by Ni-solvent interactions, both in the solid state and in solution, facilitating the interconversion of these compounds under various reaction conditions and leading to interesting solvato-, vapo-, and thermochromic properties. UV-vis-NIR spectroscopy has been used to study these phenomena. Absorption spectra for the room-temperature methanol or acetonitrile solutions of the pentacoordinate or octahedral compounds show three main bands in the region of 350-1000 nm that represent spin-allowed (d-d) transitions from the ground state 3A2g to the excited states 3T2g, 3T1g(3F), and 3T1g(3P). A weak shoulder was also detected on the middle peak in most spectra (700-800 nm), representing the spin-forbidden 3A2g-->1Eg transition. On the other hand, the spectra of high-temperature CH2Cl2 or acetone solutions of all complexes show four main bands at ca. 490, 650-660, 860, and 1000 nm, in addition to a shoulder on the first or second band.  相似文献   

2.
Divalent manganese, cobalt, nickel, and zinc complexes of 6-Ph(2)TPA (N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-Ph(2)TPA)Mn(CH(3)OH)(3)](ClO(4))(2) (1), [(6-Ph(2)TPA)Co(CH(3)CN)](ClO(4))(2) (2), [(6-Ph(2)TPA)Ni(CH(3)CN)(CH(3)OH)](ClO(4))(2) (3), [(6-Ph(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (4)) and 6-(Me(2)Ph)(2)TPA (N,N-bis((6-(3,5-dimethyl)phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-(Me(2)Ph)(2)TPA)Ni(CH(3)CN)(2)](ClO(4))(2) (5) and [(6-(Me(2)Ph)(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (6)) have been prepared and characterized. X-ray crystallographic characterization of 1A.CH(3)()OH and 1B.2CH(3)()OH (differing solvates of 1), 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN revealed mononuclear cations with one to three coordinated solvent molecules. In 1A.CH(3)()OH and 1B.2CH(3)()OH, one phenyl-substituted pyridyl arm is not coordinated and forms a secondary hydrogen-bonding interaction with a manganese bound methanol molecule. In 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN, all pyridyl donors of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands are coordinated to the divalent metal center. In the cobalt, nickel, and zinc derivatives, CH/pi interactions are found between a bound acetonitrile molecule and the aryl appendages of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands. (1)H NMR spectra of 4 and 6 in CD(3)NO(2) solution indicate the presence of CH/pi interactions, as an upfield-shifted methyl resonance for a bound acetonitrile molecule is present. Examination of the cyclic voltammetry of 1-3 and 5 revealed no oxidative (M(II)/M(III)) couples. Admixture of equimolar amounts of 6-Ph(2)TPA, M(ClO(4))(2).6H(2)O, and Me(4)NOH.5H(2)O, followed by the addition of an equimolar amount of acetohydroxamic acid, yielded the acetohydroxamate complexes [((6-Ph(2)TPA)Mn)(2)(micro-ONHC(O)CH(3))(2)](ClO(4))(2) (8), [(6-Ph(2)TPA)Co(ONHC(O)CH(3))](ClO(4))(2) (9), [(6-Ph(2)TPA)Ni(ONHC(O)CH(3))](ClO(4))(2) (10), and [(6-Ph(2)TPA)Zn(ONHC(O)CH(3))](ClO(4))(2) (11), all of which were characterized by X-ray crystallography. The Mn(II) complex 8.0.75CH(3)()CN.0.75Et(2)()O exhibits a dinuclear structure with bridging hydroxamate ligands, whereas the Co(II), Ni(II), and Zn(II) derivatives all exhibit mononuclear six-coordinate structures with a chelating hydroxamate ligand.  相似文献   

3.
The synthesis and characterisation of a pyridazine-containing two-armed grid ligand L2 (prepared from one equivalent of 3,6-diformylpyridazine and two equivalents of p-anisidine) and the resulting transition metal (Zn, Cu, Ni, Co, Fe, Mn) complexes (1-9) are reported. Single-crystal X-ray structure determinations revealed that the copper(I) complex had self-assembled as a [2 x 2] grid, [Cu(I) (4)(L2)(4)][PF(6)](4).(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25) (2.(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25)), whereas the [Zn(2)(L2)(2)(CH(3)CN)(2)(H(2)O)(2)][ClO(4)](4).CH(3)CN (1.CH(3)CN), [Ni(II) (2)(L2)(2)(CH(3)CN)(4)][BF(4)](4).(CH(3)CH(2)OCH(2)CH(3))(0.25) (5 a.(CH(3)CH(2)OCH(2)CH(3))(0.25)) and [Co(II) (2)(L2)(2)(H(2)O)(2)(CH(3)CN)(2)][ClO(4)](4).(H(2)O)(CH(3)CN)(0.5) (6 a.(H(2)O)(CH(3)CN)(0.5)) complexes adopt a side-by-side architecture; iron(II) forms a monometallic cation binding three L2 ligands, [Fe(II)(L2)(3)][Fe(III)Cl(3)OCl(3)Fe(III)].CH(3)CN (7.CH(3)CN). A more soluble salt of the cation of 7, the diamagnetic complex [Fe(II)(L2)(3)][BF(4)](2).2 H(2)O (8), was prepared, as well as two derivatives of 2, [Cu(I) (2)(L2)(2)(NCS)(2)].H(2)O (3) and [Cu(I) (2)(L2)(NCS)(2)] (4). The manganese complex, [Mn(II) (2)(L2)(2)Cl(4)].3 H(2)O (9), was not structurally characterised, but is proposed to adopt a side-by-side architecture. Variable temperature magnetic susceptibility studies yielded small negative J values for the side-by-side complexes: J=-21.6 cm(-1) and g=2.17 for S=1 dinickel(II) complex [Ni(II) (2)(L2)(2)(H(2)O)(4)][BF(4)](4) (5 b) (fraction monomer 0.02); J=-7.6 cm(-1) and g=2.44 for S= 3/2 dicobalt(II) complex [Co(II) (2)(L2)(2)(H(2)O)(4)][ClO(4)](4) (6 b) (fraction monomer 0.02); J=-3.2 cm(-1) and g=1.95 for S= 5/2 dimanganese(II) complex 9 (fraction monomer 0.02). The double salt, mixed valent iron complex 7.H(2)O gave J=-75 cm(-1) and g=1.81 for the S= 5/2 diiron(III) anion (fraction monomer=0.025). These parameters are lower than normal for Fe(III)OFe(III) species because of fitting of superimposed monomer and dimer susceptibilities arising from trace impurities. The iron(II) centre in 7.H(2)O is low spin and hence diamagnetic, a fact confirmed by the preparation and characterisation of the simple diamagnetic iron(II) complex 8. M?ssbauer measurements at 77 K confirmed that there are two iron sites in 7.H(2)O, a low-spin iron(II) site and a high-spin diiron(III) site. A full electrochemical investigation was undertaken for complexes 1, 2, 5 b, 6 b and 8 and this showed that multiple redox processes are a feature of all of them.  相似文献   

4.
The use of 1,3,5-triaminocyclohexane (tach) as a capping ligand in generating metal-cyanide cage clusters with accessible cavities is demonstrated. The precursor complexes [(tach)M(CN)(3)] (M = Cr, Fe, Co) are synthesized by methods similar to those employed in preparing the analogous 1,4,7-triazacyclononane (tacn) complexes. Along with [(tach)Fe(CN)(3)](1)(-), the latter two species are found to adopt low-spin electron configurations. Assembly reactions between [(tach)M(CN)(3)] (M = Fe, Co) and [M'(H(2)O)(6)](2+) (M' = Ni, Co) in aqueous solution afford the clusters [(tach)(4)(H(2)O)(12)Ni(4)Co(4)(CN)(12)](8+), [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+), and [(tach)(4)(H(2)O)(12)Ni(4)Fe(4)(CN)(12)](8+), each possessing a cubic arrangement of eight metal ions linked through edge-spanning cyanide bridges. This geometry is stabilized by hydrogen-bonding interactions between tach and water ligands through an intervening solvate water molecule or bromide counteranion. The magnetic behavior of the Ni(4)Fe(4) cluster indicates weak ferromagnetic coupling (J = 5.5 cm(-)(1)) between the Ni(II) and Fe(III) centers, leading to an S = 6 ground state. Solutions containing [(tach)Fe(CN)(3)] and a large excess of [Ni(H(2)O)(6)](2+) instead yield a trigonal pyramidal [(tach)(H(2)O)(15)Ni(3)Fe(CN)(3)](6+) cluster, in which even weaker ferromagnetic coupling (J = 1.2 cm(-)(1)) gives rise to an S = (7)/(2) ground state. Paralleling reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], [(tach)Cr(CN)(3)] reacts with [Ni(H(2)O)(6)](2+) in aqueous solution to produce [(tach)(8)Cr(8)Ni(6)(CN)(24)](12+), featuring a structure based on a cube of Cr(III) ions with each face centered by a square planar [Ni(CN)(4)](2)(-) unit. The metal-cyanide cage differs somewhat from that of the analogous Me(3)tacn-ligated cluster, however, in that it is distorted via compression along a body diagonal of the cube. Additionally, the compact tach capping ligands do not hinder access to the sizable interior cavity of the molecule, permitting host-guest chemistry. Mass spectrometry experiments indicate a 1:1 association of the intact cluster with tetrahydrofuran (THF) in aqueous solution, and a crystal structure shows the THF molecule to be suspended in the middle of the cluster cavity. Addition of THF to an aqueous solution containing [(tach)Co(CN)(3)] and [Cu(H(2)O)(6)](2+) templates the formation of a closely related cluster, [(tach)(8)(H(2)O)(6)Cu(6)Co(8)(CN)(24) superset THF](12+), in which paramagnetic Cu(II) ions with square pyramidal coordination are situated on the face-centering sites. Reactions intended to produce the cubic [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+) cluster frequently led to an isomeric two-dimensional framework, [(tach)(H(2)O)(3)Co(2)(CN)(3)](2+), exhibiting mer rather than fac stereochemistry at the [Co(H(2)O)(3)](2+) subunits. Attempts to assemble larger edge-bridged cubic clusters by reacting [(tach)Cr(CN)(3)] with [Ni(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes instead generated extended one- or two-dimensional solids. The magnetic properties of one of these solids, two-dimensional [(tach)(2)(cyclam)(3)Ni(3)Cr(2)(CN)(6)]I(2), suggest metamagnetic behavior, with ferromagnetic intralayer coupling and weak antiferromagnetic interactions between layers.  相似文献   

5.
The recent discovery of acireductone dioxygenase (ARD), a metalloenzyme containing a mononuclear octahedral Ni(II) center, necessitates the development of model systems for evaluating the role of the metal center in substrate oxidation chemistry. In this work, three Ni(II) complexes of an aryl-appended tris((2-pyridyl)methyl)amine ligand (6-Ph(2)TPA, N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), [(6-Ph(2)TPA)Ni(CH(3)CN)(CH(3)OH)](ClO(4))(2) (1), [(6-Ph(2)TPA)Ni(ONHC(O)CH(3))]ClO(4) (3), and [(6-Ph(2)TPA)Ni-Cl(CH(3)CN)]ClO(4) (4), and one Ni(II) complex of tris((2-pyridyl)methyl)amine, [(TPA)Ni(CH(3)CN)(H(2)O)](ClO(4))(2) (2), have been characterized in acetonitrile solution using conductance methods and NMR spectroscopy. In acetonitrile solution, 1-4 have monomeric cations that exhibit isotropically shifted (1)H NMR resonances. Full assignment of these resonances was achieved using one- and two-dimensional (1)H NMR techniques and (2)H NMR of analogues having deuteration of the supporting chelate ligand. COSY cross peaks were observed for pyridyl protons of the 6-Ph(2)TPA ligand in 1 and 3. This study lays the groundwork for using NMR methods to examine chemical reactions of 1 and 2 with model substrates of relevance to ARD.  相似文献   

6.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

7.
Kou HZ  Zhou BC  Liao DZ  Wang RJ  Li Y 《Inorganic chemistry》2002,41(25):6887-6891
Two cyano-bridged Ni(II)-Fe(III) complexes [(H(3)O)[Ni(H(2)L)](2)[Fe(CN)(6)](2).[Fe(CN)(6)].6H(2)O](n) (1) and [K(18-C-6)(H(2)O)(2)][Ni(H(2)L)](2)[Fe(CN)(6)](3).4(18-C-6).20H(2)O (2) (L = 3,10-bis(2-aminoethyl)-1,3,6,8,10,12-hexaazacyclotetradecane, 18-C-6 = 18-crown-6-ether) have been synthesized and characterized structurally and magnetically. Complex 1 has a zigzag one-dimensional structure, in which two trans-CN(-) ligands of each [Fe(CN)(6)](3)(-) link two trans-[Ni(H(2)L)](4+) groups, and in turn, each trans-[Ni(H(2)L)](4+) links two [Fe(CN)(6)](3)(-) in a trans fashion. Complex 2 is composed of cyano-bridged pentanuclear molecules with moieties connected by the trans-CN(-) ligands of [Fe(CN)(6)](3)(-). Magnetic studies show the existence of ferromagnetic Ni(II)-Fe(III) interactions in both complexes. The intermetallic magnetic coupling constant of both complexes was analyzed by using an approximate model on the basis of the structural features.  相似文献   

8.
The heterometallic complex (NH(3))(2)YbFe(CO)(4) was prepared from the reduction of Fe(3)(CO)(12) by Yb in liquid ammonia. Ammonia was displaced from (NH(3))(2)YbFe(CO)(4) by acetonitrile in acetonitrile solution, and the crystalline compounds {[(CH(3)CN)(3)YbFe(CO)(4))](2).CH(3)CN}(infinity) and [(CH(3)CN)(3)YbFe(CO)(4)](infinity) were obtained. An earlier X-ray study of {[(CH(3)CN)(3)YbFe(CO)(4)](2).CH(3)CN}(infinity) showed that it is a ladder polymer with direct Yb-Fe bonds. In the present study, an X-ray crystal structure analysis also showed that [(CH(3)CN)(3)YbFe(CO)(4)](infinity) is a sheetlike array with direct Yb-Fe bonds. Crystal data for {[(CH(3)CN)(3)YbFe(CO)(4)](2).CH(3)CN}(infinity): monoclinic space group P2(1)/c, a = 21.515(8) ?, b = 7.838(2) ?, c = 19.866(6) ?, beta = 105.47(2) degrees, Z = 4. Crystal data for [(CH(3)CN)(3)YbFe(CO)(4)](infinity): monoclinic space group P2(1)/n, a = 8.364(3) ?, b = 9.605(5) ?, c = 17.240(6) ?, beta = 92.22(3) degrees, Z = 4. Electrical conductivity measurements in acetonitrile show that these acetonitrile complexes are partially dissociated into ionic species. IR and NMR spectra of the solutions reveal the presence of [HFe(CO)(4)](-). However, upon recrystallization, the acetonitrile complexes show no evidence for the presence of [HFe(CO)(4)](-) on the basis of their IR spectra. The solid state MAS (2)H NMR spectra of deuterated acetonitrile complexes give no evidence for [(2)HFe(CO)(4)](-). It appears that rupture of the Yb-Fe bond could occur in solution to generate the ion pair [L(n)Yb](2+)[Fe(CO)(4)](2-), but then the highly basic [Fe(CO)(4)](2-) anion could abstract a proton from a coordinated acetonitrile ligand to form [HFe(CO)(4)](-). However, upon crystallization, the proton could be transferred back to the ligand, which results in the neutral polymeric species.  相似文献   

9.
Seven acetate-diphenoxo triply bridged M(II)-Ln(III) complexes (M(II) = Ni(II) and Ln(III) = Gd, Tb, Ho, Er, and Y; M(II) = Zn(II) and Ln(III) = Ho(III) and Er(III)) of formula [M(μ-L)(μ-OAc)Ln(NO(3))(2)], one nitrate-diphenoxo triply bridged Ni(II)-Tb(III) complex, [Ni(μ-L)(μ-NO(3))Tb(NO(3))(2)]·2CH(3)OH, and two diphenoxo doubly bridged Ni(II)-Ln(III) complexes (Ln(III) = Eu, Gd) of formula [Ni(H(2)O)(μ-L)Ln(NO(3))(3)]·2CH(3)OH have been prepared in one pot reaction from the compartmental ligand N,N',N"-trimethyl-N,N"-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H(2)L). Moreover, Ni(II)-Ln(III) complexes bearing benzoate or 9-anthracenecarboxylate bridging groups of formula [Ni(μ-L)(μ-BzO)Dy(NO(3))(2)] and [Ni(μ-L)(μ-9-An)Dy(9-An)(NO(3))(2)]·3CH(3)CN have also been successfully synthesized. In acetate-diphenoxo triply bridged complexes, the acetate bridging group forces the structure to be folded with an average hinge angle in the M(μ-O(2))Ln bridging fragment of ~22°, whereas nitrate-diphenoxo doubly bridged complexes and diphenoxo-doubly bridged complexes exhibit more planar structures with hinge angles of ~13° and ~2°, respectively. All Ni(II)-Ln(III) complexes exhibit ferromagnetic interactions between Ni(II) and Ln(III) ions and, in the case of the Gd(III) complexes, the J(NiGd) coupling increases weakly but significantly with the planarity of the M-(O)(2)-Gd bridging fragment and with the increase of the Ni-O-Gd angle. Density functional theory (DFT) theoretical calculations on the Ni(II)Gd(III) complexes and model compounds support these magneto-structural correlations as well as the experimental J(NiGd) values, which were found to be ~1.38 and ~2.1 cm(-1) for the folded [Ni(μ-L)(μ-OAc)Gd(NO(3))(2)] and planar [Ni(H(2)O)(μ-L)Gd(NO(3))(3)]·2CH(3)OH complexes, respectively. The Ni(II)Dy(III) complexes exhibit slow relaxation of the magnetization with Δ/k(B) energy barriers under 1000 Oe applied magnetic fields of 9.2 and 10.1 K for [Ni(μ-L)(μ-BzO)Dy(NO(3))(2)] and [Ni(μ-L)(μ-9-An)Dy(9-An)(NO(3))(2)]·3CH(3)CN, respectively.  相似文献   

10.
Several cyanogold complexes react with the binuclear nickel complex [(Ni(dien)(H(2)O))(2)(mu-ox)](PF(6))(2).2H(2)O to give the compounds [(Ni(dien)(H(2)O))(2)(mu-ox)]Br(2) (1), [(Ni(dien)(Au(CN)(2)))(2)(mu-ox)] (2), and [(Ni(dien))(2)(mu-ox)(mu-Au(CN)(4))](PF(6)) (3) (dien, diethilenetriamine; ox, oxalate). In the case of compounds 2 and 3, water displacement by the corresponding cyanogold complex takes place, whereas compound 1 is formed by a substitution of the anion. The crystal structures of compounds 1 and 2 present a 2D arrangement where the layers are connected by van der Waals forces (1) or N-H.Ntbd1;C hydrogen bonds (2), where each binuclear complex is hydrogen bonded to its neighbors, whereas compound 3 presents a novel structure where the tetracyanoaurate acts as a bridging ligand to give a polymeric compound. Magnetic studies of these compounds reveal an antiferromagnetic behavior. Finally, density functional theory (DFT) calculations have been performed on isolated models of compounds 2 and 3 in order to gain some insight about the different behavior of the [Au(CN)(2)](-) and [Au(CN)(4)](-) groups as ligands and proton acceptors in hydrogen bonds.  相似文献   

11.
The aquapentacyanoferrate(II) ion, [Fe(II)(CN)(5)H(2)O](3-), catalyzes the disproportionation reaction of O-methylhydroxylamine, NH(2)OCH(3), with stoichiometry 3NH(2)OCH(3) → NH(3) + N(2) + 3CH(3)OH. Kinetic and spectroscopic evidence support an initial N coordination of NH(2)OCH(3) to [Fe(II)(CN)(5)H(2)O](3-) followed by a homolytic scission leading to radicals [Fe(II)(CN)(5)(?)NH(2)](3-) (a precursor of Fe(III) centers and bound NH(3)) and free methoxyl, CH(3)O(?), thus establishing a radical path leading to N-methoxyamino ((?)NHOCH(3)) and 1,2-dimethoxyhydrazine, (NHOCH(3))(2). The latter species is moderately stable and proposed to be the precursor of N(2) and most of the generated CH(3)OH. Intermediate [Fe(III)(CN)(5)L](2-) complexes (L = NH(3), H(2)O) form dinuclear cyano-bridged mixed-valent species, affording a catalytic substitution of the L ligands promoted by [Fe(II)(CN)(5)L](3-). Free or bound NH(2)OCH(3) may act as reductants of [Fe(III)(CN)(5)L](2-), thus regenerating active sites. At increasing concentrations of NH(2)OCH(3) a coordinated diazene species emerges, [Fe(II)(CN)(5)N(2)H(2)](3-), which is consumed by the oxidizing CH(3)O(?), giving N(2) and CH(3)OH. Another side reaction forms [Fe(II)(CN)(5)N(O)CH(3)](3-), an intermediate containing the nitrosomethane ligand, which is further oxidized to the nitroprusside ion, [Fe(II)(CN)(5)NO](2-). The latter is a final oxidation product with a significant conversion of the initial [Fe(II)(CN)(5)H(2)O](3-) complex. The side reaction partially blocks the Fe(II)-aqua active site, though complete inhibition is not achieved because the radical path evolves faster than the formation rates of the Fe(II)-NO(+) bonds.  相似文献   

12.
Four new nickel(II) complexes, [Ni(2)L(2)(NO(2))(2)]·CH(2)Cl(2)·C(2)H(5)OH, 2H(2)O (1), [Ni(2)L(2)(DMF)(2)(μ-NO(2))]ClO(4)·DMF (2a), [Ni(2)L(2)(DMF)(2)(μ-NO(2))]ClO(4) (2b) and [Ni(3)L'(2)(μ(3)-NO(2))(2)(CH(2)Cl(2))](n)·1.5H(2)O (3) where HL = 2-[(3-amino-propylimino)-methyl]-phenol, H(2)L(') = 2-({3-[(2-hydroxy-benzylidene)-amino]-propylimino}-methyl)-phenol and DMF = N,N-dimethylformamide, have been synthesized starting with the precursor complex [NiL(2)]·2H(2)O, nickel(ii) perchlorate and sodium nitrite and characterized structurally and magnetically. The structural analyses reveal that in all the complexes, Ni(II) ions possess a distorted octahedral geometry. Complex 1 is a dinuclear di-μ(2)-phenoxo bridged species in which nitrite ion acts as chelating co-ligand. Complexes 2a and 2b also consist of dinuclear entities, but in these two compounds a cis-(μ-nitrito-1κO:2κN) bridge is present in addition to the di-μ(2)-phenoxo bridge. The molecular structures of 2a and 2b are equivalent; they differ only in that 2a contains an additional solvated DMF molecule. Complex 3 is formed by ligand rearrangement and is a one-dimensional polymer in which double phenoxo as well as μ-nitrito-1κO:2κN bridged trinuclear units are linked through a very rare μ(3)-nitrito-1κO:2κN:3κO' bridge. Analysis of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the nickel(ii) ions in four complexes, with exchange parameters J of -5.26, -11.45, -10.66 and -5.99 cm(-1) for 1, 2a, 2b and 3, respectively.  相似文献   

13.
A series of Ni(II) carboxylate complexes, supported by a chelate ligand having either secondary hydrophobic phenyl groups (6-Ph2TPA, N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine) or hydrogen bond donors (bnpapa, N,N-bis((6-neopentylamino-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), have been prepared and characterized. X-ray crystallographic studies of [(6-Ph2TPA)Ni(O2C(CH2)2SCH3)]ClO4.CH2Cl2 (4.CH2Cl2) and [(6-Ph2TPA)Ni(O2CCH2SCH3)]ClO(4).1.5CH2Cl2 (5.1.5CH2Cl2) revealed that each complex contains a distorted octahedral Ni(II) center and a bidentate carboxylate ligand. A previously described benzoate complex ([(6-Ph2TPA)Ni(O2CPh)]ClO4 (3)) has similar structural characteristics. Recrystallization of dry powdered samples of 3, 4.0.5CH2Cl2, and 5 from wet organic solvents yielded a second series of crystalline Ni(II) carboxylate complexes having a coordinated monodentate carboxylate ligand ([(6-Ph2TPA)Ni(H2O)(O2CPh)]ClO4 (6), [(6-Ph2TPA)Ni(H2O)(O2C(CH2)2SCH3)]ClO4.0.2CH2Cl2 (7.0.2CH2Cl2), [(6-Ph2TPA)Ni(H2O)(O2CCH2SCH3)]ClO4 (8)) which is stabilized by a hydrogen-bonding interaction with a Ni(II)-bound water molecule. In the cationic portions of 7.0.2CH2Cl2 and 8, weak CH/pi interactions are also present between the methylene units of the carboxylate ligands and the phenyl appendages of the 6-Ph2TPA ligands. A formate complex of the formulation [(6-Ph2TPA)Ni(H2O)(O2CH)]ClO4 (9) was isolated and characterized. The mononuclear Ni(II) carboxylate complexes [(bnpapa)Ni(O2CPh)]ClO4 (10), [(bnpapa)Ni(O2C(CH2)2SCH3)]ClO4 (11), [(bnpapa)Ni(O2CCH2SCH3)]ClO4 (12), and [(bnpapa)Ni(O2CH)]ClO4 (13) were isolated and characterized. Two crystalline solvate forms of 10 (10.CH3CN and 10.CH2Cl2) were examined by X-ray crystallography. In both, the distorted octahedral Ni(II) center is ligated by a bidentate benzoate ligand, one Ni(II)-bound oxygen atom of which accepts two hydrogen bonds from the supporting bnpapa chelate ligand. Spectroscopic studies of 10(-13) suggest that all contain a bidentate carboxylate ligand, even after exposure to water. The combined results of this work enable the formulation of a proposed pathway for carboxylate product release from the active site Ni(II) center in acireductone dioxygenase.  相似文献   

14.
Two new cyano-bridged one-dimensional heterobimetallic coordination polymers, [(bpca)(2)Fe(III)(2)(CN)(6)Cu(H(2)O)(2).1.5H(2)O](n)() (2) and [(bpca)Fe(III)(CN)(3)Cu(bpca)(H(2)O).H(2)O](n)() (3), and a trinuclear complex, [(bpca)(2)Fe(III)(2)(CN)(6)Mn(CH(3)OH)(2)(H(2)O)(2)].2H(2)O (4), have been synthesized using the tailored tricyanometalate precursor (Bu(4)N)[Fe(bpca)(CN)(3)].H(2)O (1) (Bu(4)N(+) = tetrabutylammonium cation; bpca = bis(2-pyridylcarbonyl)amidate anion) as a building block and structurally characterized. In complex 2, the Cu(II) ions are six-coordinated in an elongated distorted octahedral environment, and they are linked by distorted octahedrons of [Fe(bpca)(CN)(3)](-) to form 1D chain of squares. Complex 3 is an unexpected chiral heterobimetallic helical chain complex, in which the helical chain consists of the asymmetric unit of [(bpca)Fe(CN)(3)Cu(bpca)(H(2)O)]. In complex 4, there are two independent trinuclear clusters in one asymmetric unit, and the coordination modes of the two methanol and two water molecules coordinating to the central Mn(II) ion are different (cis and trans). Complex 2 shows metamagnetic behavior with a Neel temperature of T(N) = 2.2 K and a critical field of 250 Oe at 1.8 K, where the cyanides mediate the intrachain ferromagnetic coupling between the Cu(II) and Fe(III) ions. Complex 3 shows ferromagnetic coupling between Cu(II) and Fe(III) ions, the best-fit for chi(M)T versus T using a 1D alternating chain model leads to the parameters J(1) = 7.9(3) cm(-)(1), J(2) = 1.03(2) cm(-)(1), and g = 2.196(3). Complex 4 exhibits ferrimagnetic behavior caused by the noncompensation of the local interacting spins (S(Mn) = 5/2 and S(Fe) = 1/2) which interact antiferromagnetically through bridging cyano groups.  相似文献   

15.
The nature and dynamics of the lowest excited states of fac-[Re(I)(L)(CO)(3)(phen)](+) and fac-[Re(I)(L)(CO)(3)(5-NO(2)-phen)](+) [L = Cl(-), 4-ethyl-pyridine (4-Etpy), imidazole (imH); phen = 1,10-phenanthroline] have been investigated by picosecond visible and IR transient absorption spectroscopy in aqueous (L = imH), acetonitrile (L = 4-Etpy, imH), and MeOH (L = imH) solutions. The phen complexes have long-lived Re(I) --> phen (3)MLCT excited states, characterized by CO stretching frequencies that are upshifted relative to their ground-state values and by widely split IR bands due to the out-of-phase A'(2) and A"nu(CO) vibrations. The lowest excited states of the 5-NO(2)-phen complexes also have (3)MLCT character; the larger upward nu(CO) shifts accord with much more extensive charge transfer from the Re(I)(CO)(3) unit to 5-NO(2)-phen in these states. Transient visible absorption spectra indicate that the excited electron is delocalized over the 5-NO(2)-phen ligand, which acquires radical anionic character. Similarly, involvement of the -NO(2) group in the Franck-Condon MLCT transition is manifested by the presence of an enhanced nu(NO(2)) band in the preresonance Raman spectrum of [Re(I)(4-Etpy)(CO)(3)(5-NO(2)-phen)](+). The Re(I) --> 5-NO(2)-phen (3)MLCT excited states are very short-lived: 7.6, 170, and 43 ps for L = Cl(-), 4-Etpy, and imH, respectively, in CH(3)CN solutions. The (3)MLCT excited state of [Re(I)(imH)(CO)(3)(5-NO(2)-phen)](+) is even shorter-lived in MeOH (15 ps) and H(2)O (1.3 ps). In addition to (3)MLCT, excitation of [Re(I)(imH)(CO)(3)(5-NO(2)-phen)](+) populates a (3)LLCT (imH --> 5-NO(2)-phen) excited state. Most of the (3)LLCT population decays to the ground state (time constants of 19 (H(2)O), 50 (MeOH), and 72 ps (CH(3)CN)); in a small fraction, however, deprotonation of the imH.+ ligand occurs, producing a long-lived species, [Re(I)(im.)(CO)(3)(5-NO(2)-phen).-]+.  相似文献   

16.
Rudzka K  Arif AM  Berreau LM 《Inorganic chemistry》2008,47(23):10832-10840
Using a new N(4)-donor chelate ligand having a mixture of hydrophobic phenyl and hydrogen-bond-donor appendages, a trinuclear nickel(II) complex of the doubly deprotonated form of 2-hydroxy-1,3-diphenylpropane-1,3-dione was isolated, characterized (X-ray crystallography, elemental analysis, UV-vis, (1)H NMR, FTIR, and magnetic moment measurement), and evaluated for O(2) reactivity. This complex, [(6-NA-6-Ph(2)TPANi)(2)(mu-PhC(O)C(O)C(O)Ph)(2)Ni](ClO(4))(2) (4), has two terminal pseudooctahedral Ni(II) centers supported by the tetradentate chelate ligand and a central square-planar Ni(II) ion ligated by oxygen atoms of two bridging enediolate ligands. In CH(3)CN, 4 exhibits a deep orange/brown color and lambda(max) = 463 nm (epsilon = 16 000 M(-1)cm(-1)). The room temperature magnetic moment of 4, determined by Evans method, is mu(eff) = 5.3(2) mu(B). This is consistent with the presence of two noninteracting high-spin Ni(II) centers, a diamagnetic central Ni(II) ion, and an overall quintet ground state. Exposure of a CH(3)CN solution of 4 to O(2) results in the rapid loss of the orange/brown color to give a green solution. The products identified from this reaction are [(kappa(3)-6-NA-6-Ph(2)TPA)Ni(O(2)Ph)(H(2)O)]ClO(4) (5), benzil [PhC(O)C(O)Ph], and CO. Identification of 5 was achieved via its independent synthesis and a comparison of its (1)H NMR and mass spectral features with those of the 6-NA-6-Ph(2)TPA-containing product generated upon reaction of 4 with O(2). The independently prepared sample of 5 was characterized by X-ray crystallography, elemental analysis, UV-vis, mass spectrometry, and FTIR. The O(2) reactivity of 4 has relevance to the active-site chemistry of Ni(II)-containing acireductone dioxygenase (Ni(II)ARD).  相似文献   

17.
Yao MX  Zheng Q  Cai XM  Li YZ  Song Y  Zuo JL 《Inorganic chemistry》2012,51(4):2140-2149
By the reactions of Mn(III) Schiff-base complexes with the tricyanometalate building block, [(Tp)Cr(CN)(3)](-) (Tp = Tris(pyrazolyl) hydroborate), two couples of enantiomerically pure chiral cyano-bridged heterobimetallic one-dimensional (1D) chain complexes, [Mn((R,R)-Salcy)Cr(Tp)(CN)(3)·1/4H(2)O·1/2CH(2)Cl(2)](n) (1) and [Mn((S,S)-Salcy)Cr(Tp)(CN)(3)·1/4H(2)O·1/2CH(2)Cl(2)](n) (2) (Salcy = N,N'-(1,2-cyclohexanediylethylene)bis(salicylideneiminato) dianion), [Mn((R,R)-Salphen)Cr(Tp)(CN)(3)](n) (3) and [Mn((S,S)-Salphen)Cr(Tp)(CN)(3)](n) (4) (Salphen = N,N'-1,2-diphenylethylene-bis(salicylideneiminato) dianion), have been successfully synthesized. Circular dichroism (CD) spectra confirm the enantiomeric nature of the optically active complexes. Structural analyses reveal the formation of neutral cyano-bridged zigzag single chains in 1 and 2, and neutral cyano-bridged zigzag double chains in 3 and 4. Magnetic studies show that antiferromagnetic couplings are operative between Cr(III) and Mn(III) centers bridged by cyanide. Complexes 1 and 2 are the rare examples of chiral ferrimagnets; while complexes 3 and 4 exhibit a coexistence of chirality and spin-glass behavior in a 1D chain.  相似文献   

18.
Several mononuclear Ni(II) complexes of the type [Ni(L)(CH(3)CN)(2)](BPh(4))(2) 1-7, where L is a tetradentate tripodal 4N ligand such as N,N-dimethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (L1), N,N-diethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (L2), N,N-dimethyl-N'-(1-methyl-1H-imidazol-2-ylmethyl)-N'-(pyrid-2-ylmethyl)ethane-1,2-diamine (L3), N,N-dimethyl-N',N'-bis(1-methyl-1H-imidazol-2-ylmethyl)ethane-1,2-diamine (L4), N,N-dimethyl-N',N'-bis(quinolin-2-ylmethyl)ethane-1,2-diamine (L5), tris(benzimidazol-2-ylmethyl)amine (L6) and tris(pyrid-2-ylmethyl)amine (L7), have been isolated and characterized using CHN analysis, UV-Visible spectroscopy and mass spectrometry. The single-crystal X-ray structures of the complexes [Ni(L1)(CH(3)CN)(H(2)O)](ClO(4))(2) 1a, [Ni(L2)(CH(3)CN)(2)](BPh(4))(2) 2, [Ni(L3)(CH(3)CN)(2)](BPh(4))(2) 3 and [Ni(L4)(CH(3)CN)(2)](BPh(4))(2) 4 have been determined. All these complexes possess a distorted octahedral coordination geometry in which Ni(II) is coordinated to four nitrogen atoms of the tetradentate ligands and two CH(3)CN (2, 3, 4) or one H(2)O and one CH(3)CN (1a) are located in cis positions. The Ni-N(py) bond distances (2.054(2)-2.078(3) ?) in 1a, 2 and 3 are shorter than the Ni-N(amine) bonds (2.127(2)-2.196(3) ?) because of sp(2) and sp(3) hybridizations of the pyridyl and tertiary amine nitrogens respectively. In 3 the Ni-N(im) bond (2.040(5) ?) is shorter than the Ni-N(py) bond (2.074(4) ?) due to the stronger coordination of imidazole compared with the pyridine donor. In dichloromethane/acetonitrile solvent mixture, all the Ni(ii) complexes possess an octahedral coordination geometry, as revealed by the characteristic ligand field bands in the visible region. They efficiently catalyze the hydroxylation of alkanes when m-CPBA is used as oxidant with turnover number (TON) in the range of 340-620 and good alcohol selectivity for cyclohexane (A/K, 5-9). By replacing one of the pyridyl donors in TPA by a weakly coordinating -NMe(2) or -NEt(2) donor nitrogen atom the catalytic activity decreases slightly with no change in the selectivity. In contrast, upon replacing the pyridyl nitrogen donor by the strongly σ-bonding imidazolyl or sterically demanding quinolyl/benzimidazolyl nitrogen donor, both the catalytic activity and selectivity decrease, possibly due to destabilization of the intermediate [(4N)(CH(3)CN)Ni-O˙](+) radical species. Adamantane is selectively (3°/2°, 12-17) oxidized to 1-adamantanol, 2-adamantanol and 2-adamantanone while cumene is selectively oxidized to 2-phenyl-2-propanol. In contrast to cyclohexane oxidation, the incorporation of sterically hindering quinolyl/benzimidazolyl donors around Ni(ii) leads to a high 3°/2° bond selectivity for adamantane oxidation. A linear correlation between the metal-ligand covalency parameter (β) and the turnover number has been observed.  相似文献   

19.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

20.
The well-known tetradentate ligand 1,2-bis(pyridine-2-carboxamido)benzenate(2-), (bpb)2-, and its 4,5-dichloro analogue, (bpc)2-, are shown to be "noninnocent" ligands in the sense that in coordination compounds they can exist in their radical one- and diamagnetic two-electron-oxidized forms (bpbox1)- and (bpbox2)0 (and (bpcox1)- and (bpcox2)0), respectively. Photolysis of high-spin [(n-Bu)4N][FeIII(bpb)(N3)2] and its (bpc)2- analogue in acetone solution at room temperature generates the diamagnetic dinuclear complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(N3)2] and its (bpc)2- analogue; the corresponding cyano complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2] has been prepared via N3- substitution by CN-. Photolysis in frozen acetonitrile solution produces a low-spin ferric species (S = 1/2) which presumably is [FeIII(bpbox2)(N)(N3)]-, as has been established by EPR and M?ssbauer spectroscopy. The mononuclear complexes [(n-Bu)4N][FeIII(bpb)(CN2)] (low spin), [Et4N][CoIII(bpb)(CN)2] and Na[CoIII(bpc)-(CN)2].3CH3OH can be electrochemically or chemically one-electron-oxidized to give [FeIII(bpbox1)(CN)2]0 (S = 0), [CoIII(bpbox1)(CN)2]0 (S = 1/2), and [CoIII(bpcox1)(CN)2]0 (S = 1/2). All complexes have been characterized by UV-vis, EPR, and M?ssbauer spectroscopy, and their electro- and magnetochemistries have been studied. The crystal structures of [(n-Bu)4N][FeIII(bpb)(N3)2].1/2C6H6CH3, Na[FeIII(bpb)(CN)2], Na[CoIII(bpc)(CN)2].3CH3OH, [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2], and [(n-Bu)4N][FeIV2(mu-N)(bpb)(N3)2] have been determined by single-crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号