首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exceptional electrical conductivity of carbon nanotubes (CNTs) has been exploited for the preparation of conductive nanocomposites based on a large variety of insulating polymers. Among these, perfluoropolyether‐polyurethanes (PFPE‐PUs) represent a class of highly performing fluorinated materials with excellent water/oil repellency, chemical resistance, and substrate adhesion. The incorporation of highly conductive fillers to this class of highly performing materials allows them to be exploited in new technological and industrial fields where their unique properties need to be combined with the electrical conductivity or the electrostatic dissipation properties of carbon nanotubes. However, no studies have been presented so far on nanocomposites based on PFPE‐PUs and CNTs. In this work, polymer nanocomposites based on waterborne PFPE‐PUs and increasing amounts of carboxylated multiwall CNTs (COOH‐CNTs) were prepared and characterized for the first time. The effect of increasing concentration of COOH‐CNTs on the physical, mechanical, and surface properties of the nanocomposites was investigated by means of rheological measurements, dynamic mechanical analysis, thermal characterization, optical contact angle measurements, and scanning electron microscopy. In addition, electrical measurements showed that the highly insulating undoped PFPE‐PU system undergoes substantial modifications upon addition of COOH‐CNTs, leading to the formation of conductive nanocomposites with electrical conductivities as high as 1 S/cm. The results of this study demonstrate that the addition of COOH‐CNTs to PFPE‐PU systems represents a promising strategy to expand their possible use to technological applications where chemical stability, water/oil repellence and electrical conductivity are simultaneously required. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Perfluoropolyether dicarboxylic acid [HO(O?)CCF(CF3){OCF2CF(CF3)}nO(CF2)5O{CF(CF3)CF2O}m―CF(CF3)C(?O)OH; n + m = 6–12; PFPE‐DAcD] was applied to the preparation of PFPE‐DAcD/SiO2 nanocomposites by the sol–gel reactions of the corresponding diacid with tetraethoxysilane in the presence of silica nanoparticles under alkaline conditions. PFPE‐DAcD/SiO2 nanocomposites thus obtained were found to exhibit a good dispersibility and stability in not only water but also the traditional organic solvents such as methanol, ethanol, 2‐propanol, tetrahydrofuran, and 1,2‐dichloroethane. Field emission scanning electron micrograph (FE‐SEM) and dynamic light‐scattering (DLS) measurements show that these fluorinated composites are nanometer size‐controlled very fine particles. Dodecane and water contact angle measurements on the modified glass, filter paper, and polyester fabric surfaces treated with these fluorinated nanocomposites were found to exhibit the superoleophobicity and superhydrophilicity. Especially, the modified polyester fabric swatch was applied to the oil/water separation to give the high separation efficiency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The development of ultra-inert composites using fluorinated carbon fibres as the reinforcement requires fluorinated carbon fibres with a durable surface composition. Here we report the effect of direct fluorination using an F2/N2 mixture at 653 K on the surface and bulk properties of two types of high strength carbon fibres. These were treated up to a surface fluorine content of ∼64 at.% and a bulk fluorine content of ∼15 mass%. A colour change was observed after fluorination caused by the changes in the graphitic band structure of the carbon fibres by the introduction of carbon sp3 hybridisation. The tensile strength and Young's modulus decrease after fluorination by up to 33 and 22%, respectively. XRD shows marginal changes in the interlayer distance but the crystallite size increases. Changes in the electrical conductivity of the fluorinated carbon fibres indicate that the modification is confined to the near surface volume. Predominantly covalent C-F bonds are formed as shown by X-ray photoelectron spectroscopy (XPS) and measured zeta (ζ)-potentials. Hence the fluorinated fibres are hydrophobic and have low surface tensions. This and the large increase in fibre surface area, as determined by nitrogen adsorption, is expected to facilitate interfacial interaction between fluorinated carbon fibres and fluoropolymers.  相似文献   

4.
The thermodynamic stability of thin films of the perfluoropolyether (PFPE) Z-Tetraol, as a function of molecular weight, on amorphous nitrogenated carbon, CNx, is investigated. An optical surface analyzer is used to image the autophobic dewetting of the Z-Tetraol films. Film dewetting results when the PFPE film thickness applied to the CNx surface exceeds a critical value. This critical dewetting thickness is identified as the monolayer thickness of the adsorbed PFPE film via measurements of the changes in the surface energy as a function of lubricant film thickness. The observed dewetting coincides with the film thickness at which the disjoining pressure goes to zero. The critical dewetting thickness is dependent on the PFPE molecular weight.  相似文献   

5.
The thermodynamic stability of boundary lubricant films based upon mixtures of liquid perfluoropolyethers (PFPEs) is reported. Mixtures of A20H-2000 with Zdols 2000, 2500, and 4000 and Zdol-TX 2200 on amorphous carbon nitride films are investigated. An optical surface analyzer is used to image the autophobic dewetting of the mixture PFPE films. The critical dewetting thickness coincides with the monolayer thickness of the adsorbed mixture PFPE films as determined by the changes in the surface energy as a function of lubricant film thickness. The critical dewetting thickness varies linearly with mixture concentration.  相似文献   

6.
The preparation of a stabile blend from thermoplastic polymer and lubricating additive was studied with high density polyethylene (HDPE) and perfluoropolyether (PFPE). PFPE was melt blended within HDPE by injection molding. The chemical composition of the mixtures, the relative amount of PFPE on the surface, and the nature of the surface were studied by three surface sensitive methods: attenuated total reflectance infrared (ATR‐IR) spectroscopy, secondary ion mass spectroscopy (SIMS), and contact angle (CA) measurement. All the blends exhibited improved hydrophobicity. CA and SIMS gave a maximum response when about 2.0 wt % PFPE was added, whereas ATR‐IR spectroscopy gave maximum response for an addition of about 3.0 wt %. No changes in surface properties were observed when samples were reanalyzed about 1–4 months after preparation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2252–2258, 2005  相似文献   

7.
We performed a series of molecular dynamics simulations to study the PFPE (perfluoropolyether) and PE (polyether) surfactant monolayers at the water/supercritical carbon dioxide interface. Molecular differences between fluorocarbon surfactant PFPE and its hydrocarbon analogue PE were analyzed. We observed that values of intramolecular bonded interaction parameters which are related to chain rigidity determine the monolayer surface pressure. We show that "good" and "bad" properties of PFPE/PE surfactants are connected to conformational entropy. These results are consistent with our previous micellar simulations.  相似文献   

8.
The adhesion and friction properties of molecularly thin perfluoropolyether (PFPE) lubricant films dip-coated on a diamond-like carbon (DLC) overcoat of magnetic disks were studied using a pin-on-disk-type micro-tribotester that we developed. The load and friction forces were simultaneously measured on a rotating disk surface under an increasing/decreasing load cycle and slow sliding conditions. Experiments were performed using two types of PFPE lubricants: Fomblin Z-tetraol2000S with functional end-groups and Fomblin Z-03 without any end-group. The curves of the friction force as a function of the applied load agree with the curves estimated using the Johnson-Kendall-Roberts (JKR) model. The friction forces on the Z-03 films having different thicknesses were not found to decrease drastically; however, the friction forces on the Z-tetraol film were found to decrease drastically when the film thickness is more than ~1.2 nm. This drastic change in the case of the Z-tetraol film is estimated to be affected by the coverage of the lubricant film.  相似文献   

9.
New mesoporous covalent frameworks, based on hybrid fluorinated organosilicas, were prepared to realize a periodic architecture of fast molecular rotors containing dynamic dipoles in their structure. The mobile elements, designed on the basis of fluorinated p‐divinylbenzene moieties, were integrated into the robust covalent structure through siloxane bonds, and showed not only the rapid dynamics of the aromatic rings (ca. 108 Hz at 325 K), as detected by solid‐state NMR spectroscopy, but also a dielectric response typical of a fast dipole reorientation under the stimuli of an applied electric field. Furthermore, the mesochannels are open and accessible to diffusing in gas molecules, and rotor mobility could be individually regulated by I2 vapors. The iodine enters the channels of the periodic structure and reacts with the pivotal double bonds of the divinyl‐fluoro‐phenylene rotors, affecting their motion and the dielectric properties.  相似文献   

10.
PFPE‐b‐PVDF and PFPE‐b‐poly(VDF‐co‐HFP) block copolymers [where PFPE, PVDF, VDF, and HFP represent perfluoropolyether, poly(vinylidene fluoride), vinylidene fluoride (or 1,1‐difluoroethylene), and hexafluoropropylene] were synthesized by radical (co)telomerizations of VDF (or VDF and HFP) with an iodine‐terminated perfluoropolyether (PFPE‐I). Di‐tert‐butyl peroxide (DTBP) was used and was shown to act as an efficient thermal initiator. The numbers of VDF and VDF/HFP base units in the block copolymers were assessed with 19F NMR spectroscopy. According to the initial [PFPE‐I]0/[fluoroalkenes]0 and [DTBP]0/[fluoroalkenes]0 molar ratios, fluorinated block copolymers of various molecular weights (1500–30,300) were obtained. The states and thermal properties of these fluorocopolymers were investigated. The compounds containing PVDF blocks with more than 30 VDF units were crystalline, whereas all those containing poly(VDF‐co‐HFP) blocks exhibited amorphous states, whatever the numbers were of the fluorinated base units. All the samples showed negative glass‐transition temperatures higher than that of the starting PFPE. Interestingly, these PFPE‐b‐PVDF and PFPE‐b‐poly(VDF‐co‐HFP) block copolymers exhibited good thermostability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 160–171, 2003  相似文献   

11.
This paper addresses two questions related to functionalization of silica particles: (1) is the grafting of hydrophobic organoalkoxysilanes on a silica surface possible in water-rich medium and (2) how to prove the formation of covalent bonds with the surface? Trimethylethoxysilane, dimethyldiethoxysilane and methyltriethoxysilane have been reacted with precipitated silica in water-rich medium (water/ethanol 25/75 v/v) and 29Si MAS NMR was used to answer both questions: 29Si chemical shift values of the organosilicon units in the case of trimethylethoxysilane and dimethyldiethoxysilane clearly distinguished between self-condensation reactions and surface reactions through covalent bonds.  相似文献   

12.
Quantitative isotopic 13C NMR at natural abundance has been used to determine the site-by-site 13C/12C ratios in vanillin and a number of related compounds eluted from silica gel chromatography columns under similar conditions. Head-to-tail isotope fractionation is observed in all compounds at the majority of carbon positions. Furthermore, the site-specific isotope deviations show signatures characteristic of the position and functionality of the substituents present. The observed effects are more complex than would be obtained by simply summing the individual effects. Such detail is hidden when only the global 13C content is measured by mass spectrometry. In particular, carbon positions within the aromatic ring are found to show site-specific isotope fractionation between the solute and the stationary phase. These interactions, defined as non-covalent isotope effects, can be normal or inverse and vary with the substitution pattern present.  相似文献   

13.
Nitrogen adsorption isotherms for fluorinated activated carbon fiber (F-ACF) and fluorinated carbon black (F-CB) were measured at 77 K. Surface structures of F-ACF and F-CB were examined by s -plot analysis using the adsorption data on the nonporous carbon black (CB) and F-CB. The surface energy of F-ACF was lower than that of ACF. The micropore structure of ACF was preserved even after fluorination, although the limiting adsorption amount and the micropore width decreased with fluorination.  相似文献   

14.
Magnetite nanoparticles were synthesized and their post-synthesis surface modification was carried out with triethoxy terminated perfluoropolyether (PFPE) oligomers. The surface-treated nanoparticles were then dispersed in a UV-curable difunctional methacrylic PFPE oligomer. Thin films prepared from the resulting stable suspensions were photopolymerized. The obtained nanocomposites showed good distribution of the surface-treated magnetite nanoparticles in the polymer matrix. The surface treatment of magnetite nanoparticles with perfluoropolyether oligomers thus was found to be effective in preventing nanoparticle segregation and aggregation, ensuring therefore an increased compatibility with the PFPE matrix.  相似文献   

15.
Mass-selected projectile ions in the tens of electronvolt energy range undergo surface-induced dissociation upon collision with a liquid perfluorinated polyether (PFPE) surface. The efficiency of translational-to-vibrational (T-V) energy transfer is similar to that observed for a fluorinated self-assembled monolayer (SAM) surface. The thermometer ion W(CO)^’ was used to detenrrine an average T-V conversion efficiency of 18% in the collision energy range of 30–50 eV. The surface can be bombarded for several hours without displaying any change in the scattered ion products. Ion-surface reactions occur with some projectiles and are analogous to those seen with the fluorinated SAM surface. For example, WF ? + (m=1–5) and W(CO)nF ? + (n=1–2, m=1–2) are generated upon collisions of W(CO) 6 + with the PFPE liquid surface. The ion-surface reactions observed suggest that F atoms and/or CF3 groups are accessible for reaction while the oxygen atoms lie below the outermost surface layer. Chemical sputtering of the liquid surface also occurs and yields common fluorocarbon fragment ions, including CF 3 + , C2F 5 + , and C3F 7 + and the oxygenated product CFO+. The liquid surface is remarkably free of hydrocarbon impurities. Collisions of the pyrazine and benzene molecular ions, both probes for hydrocarbon impurities, resulted in very little protonated pyrazine or protonated benzene.  相似文献   

16.
To find a certain relation between the composition of carbon functional groups of humic acids derived from liquid state 13C nuclear magnetic resonance (NMR) spectra acquired with inverse-gated decoupling (IGD), known as a quantitative pulse sequence, and that by solid-state 13C NMR with cross polarization/magic angle spinning (CPMAS) techniques, fifteen soil humic acid samples with a wide range of aromaticity were analyzed. Relationships between the proportions of humic acid carbon as alkyl, O-alkyl, and aromatic carbon assessed by the two methods could be regressed to y = ax (r = 0.932-0.956; P < 0.005), respectively. The contents of alkyl, O-alkyl, and aromatic carbon assessed by CPMAS method were larger than those found by IGD method. However, the differences between the two methods were small and exclusive regression to y = x was also significant (r = 0.775-0.941; P < 0.005). Aromaticity calculated from 13C CPMAS NMR data also did not differ significantly from those computed from 13C NMR spectra with IGD. These observations indicated the comparability of the relative content of carbon functional groups in humic acids except for carboxyl and carbonyl carbon.  相似文献   

17.
Functional director alignment layers are needed for high performance liquid crystal displays (LCDs). Reported herein is a novel polymer material for LC alignment, namely, perfluoropolyether (PFPE), which exhibits a weak surface anchoring energy for bend deformation and is amenable to simple fabrication of grooved surfaces by soft lithography, a surface topography desired for multistable LCDs. Liquid crystal optical cells fabricated using Langmuir-Blodgett films of PFPE (of variable thickness) exhibited weak surface anchoring energies on the order of 10(-5) Jm2 for the nematic liquid crystal 4-cyano-4'-pentyl-1,1'-biphenyl with no dependence on film thickness.  相似文献   

18.
A series of 2,4-diphenylthiazole derivatives were synthesized and directly fluorinated at the 5-position by reaction with the N-F fluorinating reagent Accufluor®. Although fluorination occurred selectively at the thiazole ring, it was always incomplete and thus yields for the novel fluorinated products were low to moderate (19-43%) following purification to remove starting material. Nonetheless, the target compounds were obtained in a convenient and straightforward manner. Selectfluor® was not as effective as Accufluor® as it gave a trace amount of the 5-chlorothiazole that was difficult to remove by chromatography.  相似文献   

19.
A family of fluorinated gemini surfactants derived from perfluoropinacol has been synthesized as novel 19F magnetic resonance imaging (19F MRI) agents. These fluorinated surfactants with 12 symmetric fluorine atoms and one singlet 19F MR peak can be conveniently prepared from perfluoropinacol and oligo(ethylene glycols) on multi-gram scales. Solubility, hydrophilicity (log P), and critical micelle concentration (CMC) measurements of these fluorinated surfactants indicated that high aqueous solubility can be achieved by introducing oligo(ethylene glycols) with appropriate length into perfluoropinacol, i.e., manipulating the fluorine content (F%). One of these fluorinated surfactants with high aqueous solubility and excellent 19F MR properties has been identified by 19F MRI phantom experiments as a promising 19F MRI agent.  相似文献   

20.
The grafting of polystyrene with controlled molecular weight and narrow molecular weight distribution onto the carbon black surface through the trapping of polymer radicals formed by the thermal dissociation of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-terminated polystyrene (PSt-TEMPO) by the carbon black surface was investigated. PSt-TEMPO was prepared by living radical polymerization of St with the benzoyl peroxide/TEMPO system. When PSt having no terminal TEMPO moiety was heated with carbon black, no grafting of PSt onto the surface was observed. On the contrary, by the heating of PSt-TEMPO with carbon black in m-xylene at 125°C, PSt with controlled molecular weight and narrow molecular weight distribution was grafted onto the surface: the percentage grafting of PSt (Mn = 3.2 × 103;Mw/Mn = 1.07) onto furnace black was determined to be 16.0%. On the basis of the above results, it is concluded that PSt radicals formed by the thermal dissociation of the C ON bond between PSt and TEMPO are trapped by polycondensed aromatic rings of carbon black. The mole number of grafted PSt chains on the carbon black surface decreased with increasing molecular weight of PSt-TEMPO. PSt-grafted carbon black gave a stable colloidal dispersion in THF. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3165–3172, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号