首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Solid State Sciences》1999,1(2-3):119-131
Three Cu(II) complexes of N,N′-bis-(salicylidene)-1,3-diiminopropane (1), N,N′-bis-(salicylidene)-1,3-diimino-2,2-dimethylpropane (2), and N,N′-bis-(salicylidene)-1,5-diiminopentane (3) have been prepared and characterized by X-ray diffraction. All of the three complexes are four coordinated with Cu(II) in a tetrahedrally distorted square-planar geometry to two imine N atoms and two phenolate O atoms. Both 1 and 2 are monomeric with a 6-6-6 chelate ring structure and display the 2N2O donor atoms in a normal, tetradentate “cis” configuration. However, in 3 two Cu(II) ions coordinate with bis-bidentate Schiff-base ligands, such that the Cu atoms are bridged by the two ligands; about each Cu atom, the arrangement of the iminophenolate groups is trans. The CuN1O1 and CuN2O2 planes intersect to form dihedral angles of 24.7° and 34.8° for 1 and 2, respectively, while the dihedral angle of two bidentate chelate planes of 3 is 40.5°.  相似文献   

2.
Both monomeric Schiff base complexes and 1D helical polymeric complexes of Cu(II) and Ni(II) were synthesized and characterized by physicochemical and spectroscopic methods. X-ray single-crystal studies were made on [K2(CuL)2Ni(CN)4]n·0.5nEt2O and [K2(NiL)2Ni(CN)4]n·0.5nEt2O. The polymers were screened as heterogeneous catalysts for styrene epoxidation. For comparison, the catalytic properties of the homogeneous and heterogeneous catalysts were also examined under identical reaction conditions, and the influence of various solvents and oxidants was studied. The polymeric catalysts showed better activities in chloroform when using tert-butyl hydroperoxide as oxidant, suggesting that heterogenization increased the activity of the catalyst under this condition.  相似文献   

3.
A series of zeolite-Y encapsulated hybrid catalysts, [M(STCH)·xH2O]-Y have been prepared by encapsulating Schiff base complexes [where M?=?Mn(II), Fe(II), Co(II), Ni(II); (x?=?3) and Cu(II); (x?=?1); H2STCH?=?salicylaldehyde thiophene-2-carboxylic hydrazone] in zeolite-Y matrix by flexible ligand method. These hybrid materials have been characterized by various physico-chemical techniques such as ICP-OES, elemental analyses, (FT-IR and electronic) spectral studies, BET, scanning electron micrographs, thermal analysis and X-ray powder diffraction patterns. X-ray powder diffraction analysis reveals that the structural integrity of the mother zeolite in the hybrid material remained intact upon immobilization of the complex. Density functional theory is employed to calculate the relaxed structure, bond angle, bond distance, dihedral angle, difference of highest occupied molecular orbital and lowest unoccupied molecular orbital energies gap and electronic density of states of ligand and their neat transition metal complexes. The hybrid materials are active catalysts for the hydroxylation of phenol using hydrogen peroxide (30% H2O2) as an oxidant in order to selectively synthesize catechol or hydroquinone, amongst them [Cu(STCH)·H2O]-Y shown the highest % of selectivity towards catechol (81.3%).  相似文献   

4.
综述了近年来应用于端基炔偶联反应的均相、多相铜基催化剂的研究进展,包括Cu(I)、Cu(II)以及CuNPs催化剂。阐述了各催化剂催化端基炔偶联反应的最优条件,从催化剂的寿命、底物适用性等方面比较了各催化剂的性能,以及各类催化剂的可能反应机理。通过比较可得,负载型Cu(II)多相催化剂稳定且制备过程简单易行,反应条件温和、效率高,将可能成为端基炔偶联反应今后发展的主要趋势。  相似文献   

5.
Chiral bis(oxazoline) complexes of Cu(II), Zn(II) and Mg(II) have been immobilized on silica support via hydrogen-bonding interactions. Up to 93% ee is obtained in the Diels-Alder reaction between 3-((E)-2-butenoyl)-1,3-oxazolin-2-one and cyclopentadiene at room temperature with the heterogeneous bis(oxazoline) complexes, and the catalysts can be recycled without losing enantioselectivity. Experimental and theoretical studies show that the reversal of the absolute product configuration upon immobilization of the PhBOX-Cu(II) catalyst is triggered by the anion dissociation from Cu(II) onto the surface of the support.  相似文献   

6.
Two new Pd(II) N-heterocyclic iminocarbene complexes (C-N)PdCl2 that contain 5-membered chelate rings have been prepared by carbene transfer from a silver iminocarbene precursor to (COD)PdCl2. The new Pd imonocarbene complexes, as well as two that have been previously reported (altogether three 5-membered and one 6-membered chelate ring complexes) have been evaluated as catalysts for the Suzuki-Miyaura coupling reaction. The complexes were found to be active in the reaction, but without exceptional catalytic performances. The 5-membered chelate ring complexes appeared to be more robust and remained active for a longer time than the 6-membered ring congener. The catalytic performance of the 5-membered chelate ring complexes appeared to be rather insensitive to the steric demands of the imine-N-aryl group. The X-ray structure of one of the Ag iminocarbene complexes reveals the κ1(C) bonding of the iminocarbene moiety in a nearly linear Ag(I) complex; two monomeric units are associated through a weak Ag-Ag interaction. The X-ray structures of two new Pd iminocarbene complexes (C-N)PdCl2 confirm the chelating κ2(C,N) nature of the iminocarbene moiety; in both complexes, the Pd-Cl distances trans to carbene-C are slightly longer than those trans to imine-N.  相似文献   

7.
Through immobilization of two iron‐based complexes, [((2,6‐MePh)N = C(Me))2C5H3N]FeCl2 ( 1 ) and [((2,6‐iPrPh)N = C(Me))2C5H3N]FeCl2 ( 2 ), on SiO2 pretreated with tetraethylaluminoxane (TEAO), two supported iron‐based catalysts, 1 /TEAO/SiO2 ( 3 ) and 2 /TEAO/SiO2 ( 4 ), were prepared. These two supported catalysts 3 and 4 could be used to catalyze ethylene polymerization with moderate polymerization activity and prepare linear high‐density polyethylene with bimodal molecular weight distribution (MWD). It was demonstrated that immobilization of catalyst could significantly improve molecular weight (MW) of high‐MW fraction of the resultant polyethylene, as well as maintain bimodal MWD of polyethylene produced by the corresponding homogeneous catalysts. Such bimodal MWD of polyethylene produced by supported iron‐based catalysts could be well tailored by varying polymerization conditions, such as ethylene pressure and molar ratio of Al to Fe. It has been proven that TEAO is an efficient activator for both homogeneous and heterogeneous iron‐based catalysts for producing polyethylene with bimodal MWD. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5662–5669, 2004  相似文献   

8.
The polymerization and copolymerization of vinylcyclohexane with α-olefins in the presence of several heterogeneous and homogeneous catalytic systems were studied. It was shown that, with respect to activity in the polymerization of vinylcyclohexane, the tested catalysts can be arranged in the following order: α-TiCl3 < titanium-magnesium catalyst < metallocene catalyst. Poly(vinylcyclohexane) prepared with heterogeneous catalytic systems is a solid semicrystalline polymer. The properties of polymers synthesized with homogeneous systems differ substantially depending on the type of the metallocene used. In the presence of metallocenes with a C 2 symmetry, crystalline powderlike products arise, while in the case of metallocenes with C 1 and C s symmetries, polymerization yields amorphous viscous products. Molecular-mass distributions of poly(vinylcyclohexane) samples prepared using both heterogeneous titanium-magnesium catalysts and homogeneous metallocene complexes show a bimodal pattern, indicating the heterogeneity of active centers of these catalysts. Upon introduction of a comonomer (ethylene, propylene, and 1-hexene) into the reaction mixture, the activity of all studied catalytic systems increases. When Me2C(3-Me-Cp)(Flu)ZrCl2 and rac-Me2SiInd2ZrCl2 are used as catalysts, the degree of crystallinity of the copolymers grows owing to the presence of ethylene or propylene units in poly(vinylcyclohexane) chains.  相似文献   

9.
Encapsulation of tetraazamacrocyclic complexes of Co(II), Cu(II) and V(IV) into zeolite-Y has been accomplished, and the resulting materials were used as heterogeneous catalysts for aerobic oxidation of styrene. The materials were prepared by a ship-in-a-bottle method, in which the transition metal cations were first ion-exchanged into zeolite-Y and then reacted with ethylenediamine, followed by acetylacetone. The pure tetraazamacrocyclic complexes were characterized by FTIR, solid UV–Vis and elemental analysis. The structural integrity throughout the immobilization procedure, the successful immobilization of the macrocyclic complexes, and the loadings of metal ions and macrocyclic ligands were determined by characterization techniques such as FTIR, diffuse reflection UV–Vis, inductively coupled plasma atomic emission spectroscopy, scanning electron microscopy, TG/DTA and powder X-ray diffraction. Compared with their homogeneous analogues, the catalytic properties of the encapsulated macrocyclic complexes in the oxidation of styrene with air were investigated. The immobilized complexes proved to be active catalysts and could be reused without significant loss in activity.  相似文献   

10.
A novel interfacial hybrid epoxidation catalyst was designed with a new immobilization method for homogeneous catalysts by coating an inorganic support with an organic polymer film containing active sites. The titanium silsesquioxane (TiPOSS) complex, which contains a single-site titanium active center, was immobilized successfully by in-situ copolymerization on a mesoporous SBA-15-supported polystyrene polymer. The resulting hybrid materials exhibit attractive textural properties (highly ordered mesostructure, large specific surface area (>380 m2 g-1) and pore volume (>or==0.46 cm3 g-1)), and high activity in the epoxidation of alkenes. In the epoxidation of cyclooctene with tert-butyl hydrogen peroxide (TBHP), the hybrid catalysts have rate constants comparable with that of their homogeneous counterpart, and can be recycled at least seven times. They can also catalyze the epoxidation of cyclooctene with aqueous H2O2 as the oxidant. In two-phase reaction media, the catalysts show much higher activity than their homogeneous counterpart due to the hydrophobic environment around the active centers. They behave as interfacial catalysts due to their multifunctionality, that is, the hydrophobicity of polystyrene and the polyhedral oligomeric silsesquioxanes (POSS), and the hydrophilicity of the silica and the mesoporous structure. Combination of the immobilization of homogeneous catalysts on two conventional supports, inorganic solid and organic polymer, is demonstrated to achieve novel heterogeneous catalytic ensembles with the merits of attractive textural properties, tunable surface properties, and optimized environments around the active sites.  相似文献   

11.
Two chiral copper(II) bis(oxazoline) complexes have been immobilized on silica via electrostatic interactions using a remarkably straightforward procedure. The immobilized catalysts were tested in a standard Diels-Alder reaction and gave surprising results. Where the immobilized Cu((S,S)-phenyl-box)(OTf)2 catalyst was used, the predominant enantiomer formed was the opposite of that produced using the same catalyst in a homogeneous reaction. This is a startling result given that the only difference is the electrostatic immobilization of the catalyst on amorphous silica. The activity of the catalyst in a hetero Diels-Alder reaction was also tested. This catalyst was also recycled, successfully maintaining a similar activity to the homogeneous analogue through a number of cycles.  相似文献   

12.
汪海明  王正  丁奎岭 《化学进展》2010,22(7):1471-1481
催化剂的负载和回收再利用是提高其使用效率、降低反应成本和减少金属离子对产物污染的一条有效途径。与传统的负载模式不同, 手性自负载催化剂通过含双或多官能团的手性配体与金属通过自组装形成一类有机-无机聚合物,因此无需使用任何载体,即能够有效地实现手性催化剂的回收和再利用。近年来,手性自负载催化剂作为一种新的负载模式,已经成功地应用于一些非均相催化的不对称反应中。本文概述了手性自负载催化剂的在一些不对称催化反应研究中取得的新进展。  相似文献   

13.
The free radical polymerization of acrylonitrile (AN) initiated by Cu(II) 4-anilino 2-one [Cu(II) ANIPO] Cu(II), 4-p-toluedeno 3-pentene 2-one [Cu(II) TPO], and Cu(II) 4-p-nitroanilino 3-pentene 2-one [Cu(II) NAPO] was studied in benzene at 50 and 60°C and in carbon tetrachloride (CCl4), dimethyl sulfoxide (DMSO), and methanol (MeOH) at 60°C. Although the polymerization proceeded in a heterogeneous phase, it followed the kinetics of a homogeneous process. The monomer exponents were ≥2 at two different temperatures and in different solvents. The square-root dependence of Rp on initiator concentration and higher monomer exponents accounted for a 1:2 complex formation between the chelate and monomer. The complex formation was shown by ultraviolet (UV) study. The activation energies, kinetics, and chain transfer constants were also evaluated.  相似文献   

14.
Cu(II) and Zn(II) complexes of N-hydroxyimidazoles were synthesised by reacting simple metal perchlorate salts with the imidazole ligand in alcohol and formulated with a metal:ligand ratio of 1:2. The X-ray crystal structures of five complexes (four Cu(II) and one Zn(II)) were obtained and each showed the two trans, N-hydroxyimidazole ligands forming six-membered, chelate rings with the metal. Both of the NO chelating, neutral N-hydroxyimidazole ligands are in the zwitterion form, with the uncoordinated imidazole imine N atom being protonated and the oxime O atom deprotonated. In the solid state the complexes form hydrogen-bonded supramolecular structures.  相似文献   

15.
A new type of activated carbon immobilized copper(Cu/AC) photocatalyst was prepared by a facile impregnation-adsorption method, where Cu2+ is chemically adsorbed by abundant oxygenated functional groups on large-surface-area activated carbon surface. Cu/AC exhibited good activity and selectivity to imine for the hydro-amination of alkynes at 60℃ under visible light irradiation. The reaction is initialized by the activation of alkynes molecules at Cu active sites with the aid of light as evidenced by the solid-state NMR and laser photolysis measurements and the control experiments. This strategy for catalyst design is potentially extended to the immobilization of other metal homogeneous catalysts for various heterogeneous catalytic systems.  相似文献   

16.
A new dual‐functional Cu(II) complex and its nanohybrid form encapsulated into NaY zeolite cavities were synthesized. The synthesized compounds were characterized using elemental analyses, X‐ray fluorescence, infrared, 1H NMR, electronic, electron spin resonance and mass spectra, powder X‐ray diffraction, surface area and transmission electron microscopy in addition to conductivity and magnetic susceptibility measurements. The encapsulated Cu(II) complex was catalytically tested for degradation of industrial wastewater. The decolorization and mineralization results indicate that the Cu(II) complex encapsulated into zeolite host is an effective heterogeneous catalyst for real industrial wastewater remediation. In addition, both free and encapsulated Cu(II) complexes were tested as anti‐microbial and anti‐tumour agents. The results show that the Cu(II) complex encapsulated into zeolite has a high activity (IC50 = 14.4 μg ml?1). The results of in vivo toxicity experiments indicate that the Cu(II) complex encapsulated into zeolite is a less toxic biocompatible material (LD50 = 1245 mg kg?1). The catalytic properties, cytotoxicity and toxicity of the new nanohybrid Cu(II) complex encapsulated into zeolite make it a promising eco‐friendly and biocompatible material for water remediation and biomedical applications.  相似文献   

17.
In the field of heterogeneous catalysis, the successful integration of enzymes and inorganic catalysts could pave the way to multifunctional materials which are able to perform advanced cascade reactions. However, such combination is not straightforward, for example in the case of zeolite catalysts for which enzyme immobilization is restricted to the external surface. Herein, this challenge is overcome by developing a new kind of hybrid catalyst based on hollow zeolite microspheres obtained by the aerosol-assisted assembly of zeolite nanocrystals. The latter spheres possess open entry-ways for enzymes, which are then loaded and cross-linked to form cross-linked enzyme aggregates (CLEAs), securing their entrapment. This controlled design allows the combination of all the decisive features of the zeolite with a high enzyme loading. A chemo-enzymatic reaction is demonstrated, where the structured zeolite material is used both as a nest for the enzyme and as an efficient inorganic catalyst. Glucose oxidase (GOx) ensures the in situ production of H2O2 subsequently utilized by the TS-1 zeolite to catalyze the epoxidation of allylic alcohol toward glycidol. The strategy can also be used to entrap other enzymes or combination of enzymes, as demonstrated here with combi-CLEAs of horseradish peroxidase (HRP) and glucose oxidase. We anticipate that this strategy will open up new perspectives, leveraging on the spray-drying (aerosol) technique to shape microparticles from various nano-building blocks and on the entrapment of biological macromolecules to obtain new multifunctional hybrid microstructures.

A spray drying technique is used to prepare hollow zeolite microparticles into which an enzyme can be entrapped. Via this “Lego-like” strategy, we create hybrid heterogeneous catalysts that can run multistep chemo-enzymatic cascade reactions.  相似文献   

18.
以沸石和活性炭为载体,制备了Fe3 和Cu2 型沸石和活性炭催化荆,研究了非均相Fe和Cu催化剂催化氧化高浓度含酚废水.在Fenton反应机理的基础上,探讨了Cu2 的均相和非均相催化氧化机理,以人造沸石和活性炭为栽体制备了相应的4种非均相催化剂,进行了均相、非均相Fe和Cu催化剂催化氧化高浓度含酚废水的对比试验,分析了这两种载体的比表面积、孔径分布和中孔孔容,比较了4种非均相催化剂对苯酚降解率的影响.结果发现Cu2 不仅能大大提高反应速率,而且其均相、非均相反应体系的苯酚降解率均可达到约97%.  相似文献   

19.
Unbridged bis-substituted-indenyl zirconocene complexes, [(2,4-Me2Ind)2ZrCl2, Met-1; (2,4,6-Me3Ind)2ZrCl2, Met-2], were supported on silica and montmorillonite carriers (resulting in silica-supported catalysts MS-1 and MS-2, and montmorillonite-supported catalyst MT-1). Ethylene polymerization by homogeneous and heterogeneous catalysts showed high activity, affording polyethylenes with high molecular weight. The catalytic activity and the molecular weight of the polymer were improved using the heterogeneous systems. The activities for the ethylene/1-hexene copolymerization by heterogeneous systems were lower than those using homogeneous systems, however, the comonomer was incorporated efficiently into polymer in both the homo- and the heterogeneous systems, and moreover, the microstructure of the copolymer derived from the heterogeneous catalysts showed different characteristics from those resulting from the homogeneous systems. The rErH values of the heterogeneous catalysts (1.82 for MS-1 and 0.70 for MS-2), are quite different from those of their homogeneous analogues (1.25 for Met-1 and 1.26 for Met-2).  相似文献   

20.
Zn(II) can efficiently promote the catalytic performance of imidazolium salt ionic liquids (imi-ILs) for the chemical fixation of CO2 into epoxides. To obtain sustainability, immobilized bifunctional catalysts containing both imi-ILs and Zn(II) were prepared using bimodal mesoporous silica (BMMs) as carrier, through grafting of Zn(OAc)2 and 1-(trimethoxysilyl)propyl-3-methylimidazolium chloride (Si-imi) separately in the nanopores. The catalysts, named as BMMs−Zn&ILs, were identified as efficient catalysts for cycloaddition reaction of CO2 into epoxides under solvent-free conditions. BMMs−Zn&ILs showed good catalytic activity, which increased with the increase of the molar ratio of Zn(II) to Si-imi. As a comparison, different catalytic systems including homogeneous imi-IL, BMMs-ILs and BMMs−Zn were studied to demonstrate different cooperation behaviors. Furthermore, the kinetics studies of homogeneous and heterogeneous bifunctional catalysts were employed to confirm the differences, as well as to support the proposed cooperative catalysis mechanism in the nanopores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号