首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate 1.7 Gbit/s transmission through 257 km of conventional fiber using directly modulated distributed-Bragg reflector (DBR) lasers and fiber amplifiers. This experiment resulted in a record bit rate distance product of 437 km Gb/s for direct modulation at rates between 1 and 3 Gbit/s. This paper has been accepted for presentation at OFC '92.  相似文献   

2.
在国内最先采用孤子的方式将8×2.5Gb/s的OTDM信号在色散位移光纤中传输了56.1km,对8×2.5Gb/s的OTDM进行解复用后进行了误码测量,系统功率代价为2.9dB.系统采用增益开关半导体激光器作光孤子源,高Q电滤波方式提取时钟,非线性光学环路镜解复用。孤子脉冲最大半宽度为20ps,传输光纤平均色散1.2ps/nm/km。  相似文献   

3.
10Gbit/s time-spread/wavelength-hop optical code generation and decoding are performed by dispersion-compensating fiber Bragg grating (FBG) en/decoder pair. Error-free 10km single mode fiber (SMF) transmission of 10Gbit/s optical code division multiplexing (OCDM) has been experimentally demonstrated.  相似文献   

4.
ABSTRACT

By incorporating double-ring cavities and a piece of un-pumped Er3+-doped fiber (EDF) as a saturable absorber, we report a single-longitude-mode EDF fiber laser at C-band. The single-longitude-mode is obtained, the first time, by inserting only two subring cavities in either serial connection or parallel connection. The fiber laser has an optical signal-to-noise-ratio of 34.5 dB and a maximum power fluctuation of less than 1.3% for 1-hr operation. It was then modulated up to 10 Gbit/s by using an electro-optic modulator for eye diagrams, compared to back-to-back transmission. Such a compact and low-cost fiber laser is potential for high-speed optical communication.  相似文献   

5.
We demonstrate 740 Gbit/s (37 × 20 Gbit/s) DWDM recirculating transmission experiment with 59 nm continuous bandwidth over 300 km by employing Er3+-doped tellurite fiber amplifiers. The use of Raman amplification is effective to increase the transmission bandwidth.  相似文献   

6.
The direct-detected optical OFDM (DDO-OFDM) system in frequency-selective fading fiber channel with three different types of pilot interval design has been experimentally investigated. In these schemes, the 2.28 Gbit/s QPSK-OFDM signal is transmitted over 100 km fiber in the system. The experiment results show the scheme with sparse pilot as frequency increasing shows the best performance for DDO-OFDM system.  相似文献   

7.
刘鎏  郑建宇  张明江  孟丽娜  张朝霞  王云才 《物理学报》2012,61(8):84204-084204
用光反馈半导体激光器产生混沌超宽带(UWB)信号, 搭建了混沌UWB光载无线通信链路, 实现了360, 720 Mbit/s和1.44 Gbit/s三种不同传输速率下混沌UWB脉冲信号的生成和传输. 在未经任何色散补偿处理的情况下, 1.44 Gbit/s的混沌UWB信号在经过10 km单模光纤和0.6 m无线链路传输后, 在天线接收端被成功解调. 由于混沌UWB信号输出的随机性, 对应的UWB信号频谱中未出现任何离散的谱线. 这意味着利用混沌UWB信号实现的光载无线通信链路, 可以完全避免离散谱线对系统传输性能的劣化.  相似文献   

8.
1IntroductionUsingdispersioncompensatingtechniquestoupgradetheexistingnondispersionshiftedfiber(NDSF)telecommunicationsystemi...  相似文献   

9.
对啁啾光纤光栅在超长距离多波长传输系统中应用时所存在的问题进行了研究,主要分析了多波长级联的啁啾光纤光栅之间的串扰,并提出了利用相干长度法来抑制不同信道间啁啾光纤光栅串扰的方法.在此基础之上实现了基于光纤光栅色散补偿的8×10Gbit/s,1500km G.652光纤上的传输系统. 关键词: 光纤通信 色散补偿 啁啾光纤光栅  相似文献   

10.
A polarization-diverse subsystem based on periodically poled lithium niobate waveguides is used as an optical phase conjugator for compensation for linear and nonlinear distortion. We show successful transmission formats of 13 x 40 Gbit/s non-return-to-zero mixed with 6 x 10 Gbit/s non-return-to-zero and 40-Gbit/s duobinary over 8 x 100 km of standard single-mode fiber. A single phase conjugator is used to conjugate all data formats, including the alternative duobinary format, simultaneously.  相似文献   

11.
The performance of absolute polar duty cycle division multiplexing (AP-DCDM) over wavelength division multiplexing (WDM) system is presented based on the simulation results. The AP-DCDM signal has narrower bandwidth than conventional time division multiplexing (TDM) signal, which makes its implementation in WDM system advantageous. In this paper, characteristics of AP-DCDM and TDM signals in WDM system are compared at the speed of 40 Gbit/s per channel, for the minimum allowed channel spacing and the chromatic dispersion tolerance. The results clearly show that AP-DCDM performs significantly better than TDM. By using AP-DCDM, 1.28 Tbit/s (32 × 40 Gbit/s) was successfully transmitted over 320 km standard single mode fiber. Spectral efficiency of 0.64 b/s/Hz was achieved by using 10 Gbit/s transmitters and receivers without polarization multiplexing.  相似文献   

12.
We demonstrated 2.16-Tbit/s (43 Gbit/s x 54 ch) WDM transmission over 600 km of standard single-mode fiber with high spectral efficiency 0.53 bit/s/Hz using optimized optical mux/demux filters for 75-GHz channel spacing in a simple NRZ modulation scheme.  相似文献   

13.
One meter-long spool of bismuth oxide-based fiber, with nonlinear coefficient of 1250 W−1 km−1, is used to realize an optical 160-to-10 Gbit/s demultiplexer based on four wave mixing. Bit-Error-Rate measurements demonstrate a demultiplexing penalty lower than 2 dB confirming the suitability of bismuth oxide-based fiber for 160 Gbit/s all-optical processing.  相似文献   

14.
In this work, WDM transmission with 40-Gbit/s per channel bit rate has been experimentally demonstrated over a 500-km link. Different chromatic dispersion conditions have been managed and in-line all-optical wavelength conversion has been carried out with a periodical poled lithium niobate (PPLN) device in a polarization-independent scheme. The link was obtained by connecting the fibers contained in an installed cable between Roma and Pomezia (25 km), encompassing single-mode (G.652) and high-end (G.655, non-zero dispersion with a particular value and flat curve for chromatic dispersion) fibers. Some 40 Gb/s channels were propagated in the link 500 km long and one channel was dropped from the link after 300-km propagation, wavelength converted, and added to the other channels for the next 200 km. The electrical data interfaces exploited a 4 × 10 Gbit/s to 1 × 40 Gbit/s MUX at the transmitter, along with a 1 × 40 Gbit/s to 4 × 10 Gbit/s DMUX at the receiver. Successful transmission of 4 channels, 200-GHz spaced, has been achieved over 500 km along both G.652 and G.655 links. No evidence of penalty comparing converted and unconverted channels has been reported. Transmission experiments of 8 × 40 Gbit/s, with 100 GHz frequency spacing, are also reported. No significant degradation has been observed in the case of the G.652 link.  相似文献   

15.
In this work, WDM transmission with 40-Gbit/s per channel bit rate has been experimentally demonstrated over a 500-km link. Different chromatic dispersion conditions have been managed and in-line all-optical wavelength conversion has been carried out with a periodical poled lithium niobate (PPLN) device in a polarization-independent scheme. The link was obtained by connecting the fibers contained in an installed cable between Roma and Pomezia (25 km), encompassing single-mode (G.652) and high-end (G.655, non-zero dispersion with a particular value and flat curve for chromatic dispersion) fibers. Some 40 Gb/s channels were propagated in the link 500 km long and one channel was dropped from the link after 300-km propagation, wavelength converted, and added to the other channels for the next 200 km. The electrical data interfaces exploited a 4 × 10 Gbit/s to 1 × 40 Gbit/s MUX at the transmitter, along with a 1 × 40 Gbit/s to 4 × 10 Gbit/s DMUX at the receiver. Successful transmission of 4 channels, 200-GHz spaced, has been achieved over 500 km along both G.652 and G.655 links. No evidence of penalty comparing converted and unconverted channels has been reported. Transmission experiments of 8 × 40 Gbit/s, with 100 GHz frequency spacing, are also reported. No significant degradation has been observed in the case of the G.652 link.  相似文献   

16.
A single chip optical receiver with an integrated large-diameter photodiode, transimpedance amplifier, two stages active equalizer, post amplifier and 50 Ω driver is used for gigabit transmission over PMMA step plastic optical fiber (SI-POF). The large-diameter photodiode with an antireflection coating optimized for red light. The integrated equalizer enables the presented optical receiver to reach 1 Gbit/s over 50 m SI-POF at bit error ratio of 10− 6. An error free (< 10− 9) 1 Gbit/s data rate over 40 m standard PMMA step-index plastic optical fiber is also achieved.  相似文献   

17.
A multichannel fiber-grating-based optical limiting amplifier module is proposed. Dual-wavelength, hybrid data rate transmission is demonstrated with 30 dB input dynamic range. For 5.0 and 2.5 Gbit s dual-channel transmission in a 200 km single-mode fiber, power penalty due to gain competition between channels and backreflection noise is less than 0.6 dB compared to the receiver sensitivity of 0 km, 5.0 Gbit per second single-channel operation.  相似文献   

18.
Recent progress on time-division multiplexed (TDM) and wavelength-division multiplexed (WDM) soliton transmission is described, in which dispersion management plays an important role in increasing the power margin and the dispersion tolerance. The characteristics of the dispersion-managed soliton are compared with those of return to zero and nonreturn to zero pulses. With a small dispersion swing, the system can still be described as an average soliton using the nonlinear Schrodinger equation, while with a large dispersion swing, the solitonlike steady-state pulse becomes a chirped Gaussian pulse, in which the governing equation is closer to a linear Schrodinger equation with a parabolic potential well. We describe an in-line modulation scheme for up to 80 Gbit/s per channel and its two channel WDM transmission over 10 000 km. Finally, we describe 640 Gbit/s (40 Gbit/sx16 channels) WDM soliton transmission over 1000 km with a dispersion-managed single-mode fiber. (c) 2000 American Institute of Physics.  相似文献   

19.
An electrical nonlinearity pre-compensation (ENPC) combined nonlinearity with chromatic dispersion method is introduced for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) system. Comparing with existed only nonlinearity pre-compensation (NL Pre-comp) method, ENPC method is not only suitable for low-dispersion fiber system, but also effective for high dispersion fiber transmission system without optical dispersion compensation. For 40 Gbit/s 20 × 80 km standard single mode fiber (SSMF) system, ENPC method can improve the nonlinear threshold (NLT) (for Q > 10 dB) about 2.7, 1.2, and 1.0 dB, and the maximum Q factor about 1.2, 0.4, and 0.3 dB for 2, 8, and 16 ps/nm/km fiber systems, respectively. The method allow the CO-OFDM system can avoid using optical dispersion compensation even for high dispersion fiber system with higher input power, and the 2-step ENPC solution does not increase more computation complexity compared with NL pre-comp method.  相似文献   

20.
The performance of various modulation schemes for 100 Gbit/s single-channel serial transmission is investigated by means of numerical simulations. Different ASK and PSK modulation formats are compared in terms of total system reach for a 10−9 BER requirement. RZ-DQPSK format with a 1920 km reach, without FEC and without the support of additional Raman amplification, outperforms all the other schemes including 10 × 10 Gbit/s NRZ DWDM inverse multiplexing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号