首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于超长周期光纤光栅的高灵敏度扭曲传感器   总被引:1,自引:0,他引:1       下载免费PDF全文
朱涛  饶云江  莫秋菊 《物理学报》2006,55(1):249-253
利用高频CO2激光脉冲写入的周期达数毫米的超长周期光纤光栅(ULPFG),实验研究了这种新型ULPFG的扭曲特性,发现它的某些高阶谐振波长漂移与扭曲率之间具有良好的线性关系和方向相关性,其灵敏度可达0.2244nm/(rad/m),是高频CO2激光脉冲写入法写入的普通LPFG扭曲灵敏度的4倍.初步的理论分析表明,新型ULPFG横截面折变的非对称性以及导模与高阶包层模之间发生的耦合使得扭曲具有方向相关性和很高的灵敏度.基于这种ULPFG独特的扭曲特性,设计了一种可 关键词: 光纤传感 光纤光栅 2激光')" href="#">CO2激光 扭曲测量 双折射  相似文献   

2.
We experimentally demonstrate a fiber ring laser for high-resolution torsion measurement, where the laser cavity consists of a Mach-Zehnder interferometer formed with a pair of long-period fiber gratings written in a twisted single-mode fiber by a CO2 laser. The emitting wavelength of the laser provides a measure of the rate of the torsion applied to the grating pair, while the direction of the wavelength shift indicates the sense of the applied torsion. The narrow linewidth and the large side-mode suppression ratio of the laser can provide a much more precise measurement of torsion, compared with passive fiber-optic torsion sensors. The torsion sensitivity achieved is 0.084 nm/(rad/m) in the torsion range ± 100 rad/m, which corresponds to a torsion resolution of 0.12 rad/m, assuming a wavelength resolution of 10 pm for a typical optical spectrum analyzer. The ultimate resolution of the sensor is limited by the linewidth of the laser and could be an order of magnitude higher.  相似文献   

3.
We propose the use of graded-index few-mode fibers for mode conversion by long-period gratings (LPG) transiently written by ultrashort laser pulses using the optical Kerr effect. The mode interaction is studied by numerically solving the multi-mode coupled nonlinear Schrödinger equations. We present highly efficient conversion of the LP01- into the LP11-mode preserving the pulse shape in contrast to previous results in step-index fibers. Furthermore, mode conversion using different wavelengths for inducing and probing the LPG is shown. Due to the flat phase-matching curve of the examined modes in the graded-index fiber, mode conversion can be observed for probe center wavelengths of 1,100 nm up to 1,800 nm with a write beam centered around 1,030 nm. Therefore, a complete separation of the probe from the write beam should be possible as well as the application of optically induced guided-mode conversion for all-optical modulation across a broad wavelength range.  相似文献   

4.
We extend the improved effective index method (IEIM) to analyze the cladding mode of the photonic crystal fiber (PCF) and to predict cladding mode coupling in gratings. By introducing a new step-index fiber model for the PCF, the cladding mode coupling between a LP01 core mode and HE11 cladding mode in long-period gratings formed in PCF is accurately predicted by the IEIM. The fiber model works well for the PCF used here not only in predicting resonant mode coupling, but also in analyzing core and low-order cladding modes.  相似文献   

5.
The propagation of higher modes, such as the LP11 mode, in optical nanofibers using the exponentially tapered optical fiber as a basic model is investigated. In order to preserve the LP11 mode in the downtaper as far as the nanofiber waist, the effect of varying the cladding-core radius ratio on the LP11 adiabatic criterion is modeled. A Laguerre-Gaussian beam is created in free space using a spatial light modulator (SLM) and coupled to a few-mode fiber. This device allows convenient switching between the fundamental and LP11 fiber modes. By selecting a few-mode fiber with a relatively low cladding-core ratio, the propagation of the LP11 mode down to a submicron waist has been maintained. Furthermore, by observing the transmission profile during tapering, it is possible to decisively terminate the pulling process in order to eliminate the two degenerate HE21 modes of the LP11 mode. As a result, a nanofiber can be fabricated through which only the TE01 and TM01 components of the LP11 mode propagate. Such a nanofiber has promising applications in the area of mode interference for controlled particle trapping sites.  相似文献   

6.
Dispersion compensation with higher order mode is emerging as a promising technique that can provide full dispersion and dispersion slope compensation for a long distance high bit rate system. Long period grating-based LP01LP02 mode converters are designed in the wavelength region of 1550 nm for this purpose. The simulated mode converters have large bandwidth with conversion efficiencies of over 99% and the estimated figure of merit is 309 ps/(nm dB). The negative dispersion of –124 ps/(nm km) is obtained over a bandwidth (@20 dB) of 58 nm with relative dispersion slope of 0.008/nm.  相似文献   

7.
Ivan Martincek  Dusan Pudis 《Optik》2011,122(8):707-710
The intermodal interference of the LP01 and LP11 modes and determination of the equalization wavelength in the liquid-core optical fiber is presented. Theoretically was described the weakly guiding optical fiber with the constant core radius, where equalization wavelength is a function of the refractive indices of core and cladding. The dependence of equalization wavelength on refractive indices is employed for measurement of temperature. Temperature sensitivity using intermodal interference of modes LP01 and LP11 was documented in the liquid-core optical fiber consisted of fused silica as cladding and medicinal oil as a core. In the investigated temperature range the intermodal interference allows the temperature measurement with resolution of about 0.02 °C.  相似文献   

8.
An all-fiber Mach–Zehnder interferometer (MZI) consisting of a long-period fiber grating with a micro-taper is proposed for simultaneous measurement of temperature and strain. The experimental results demonstrate that the temperature and strain sensitivities of the proposed MZI are 83 pm/°C and ?2.6 pm/με, respectively. The strain sensitivity is 20 times as high as that of a long-period fiber written by CO2 laser pulses combined with a fiber bitaper. In addition, the interferometer requires only a common single-mode fiber, and it is easy to fabricate and is inexpensive for temperature and strain sensing applications.  相似文献   

9.
祖鹏  向望华  金永兴 《光子学报》2014,40(9):1433-1437
研究了低双折射光子晶体光纤中由光纤扭曲造成的圆双折射效应,并应用Sagnac干涉仪结构设计了扭曲传感器.在Sagnac环中的光子晶体光纤上施加机械压力引入初始线双折射并产生正弦干涉光谱,再扭曲光纤产生圆双折射使干涉光谱随扭曲角度移动.光谱峰值波长随扭曲角度变化符合Sinc函数关系,理论分析与实验相符.传感器灵敏度为1.00 nm/°,分比率为0.01°,并具有超低的温度系数-0.5 pm/℃.  相似文献   

10.
We propose and investigate a compact optical fiber sensor that aims to measure the torsion in both amount and direction with high sensitivity. This sensor is configured by a triangular-prism-shaped long-period fiber grating, which is fabricated by the high frequency CO_2 laser polished method. The unique design of the triangular-shaped structure breaks the rotational symmetry of the optical fiber and provides high sensitivity for torsion measurement. In preliminary experiments, the torsion response of the sensor achieves a good stability and linearity. The torsion sensitivity is 0.54 nm/(rad/m), which renders the proposed structure a highly sensitive torsion sensor.  相似文献   

11.
Abstract

The long-period fiber grating is mechanically induced over a twisted fiber and its characteristics are investigated. The amplitude as well as the wavelength shift of the resonance is studied in response to the applied twist and pressures. These resonances decrease in amplitude and shift to shorter wavelength side as the applied twist increases. The spectral responses of a grating assembly formed by two grating sections in series, one section with a twisted fiber and other with an untwisted fiber, are also investigated. Shearing stress and photo-elasticity causes the fiber to be circularly birefringent and the mechanically induced grating formed over the twisted fiber region causes the appearance of two resonances shifted away from the resonances of the untwisted grating section. At higher twist rates, resonant wavelength shift becomes insensitive to applied pressures, showing a reduction in the induced linear birefringence. The wavelength shift is almost symmetric with respect to the applied twist rate in clockwise and counterclockwise directions.  相似文献   

12.
High-Order Mode Dispersion Compensating Modules (HOM-DCM) using spatial optical transformations for mode conversion are reviewed. It is shown that mode transformers using this technology can be designed to transform the LP01 mode of SMF fibers to the LP02 mode of specially designed dispersion compensating High-Order Mode Fiber (HOMF), with typical insertion loss of ∼1 dB, and typical extinction ratio to other modes less than -20 dB. The HOMF itself can provide high negative dispersion [typically in the range of 400-600 ps/(nm km)], and high negative dispersion slope, allowing efficient compensation of all types of transmission fiber. Combining two mode transformers with HOMF and possibly trim fiber for fine-tuning, results, for example, in a HOM-DCM that compensates 100 km LEAF? fiber, with Insertion loss < 3.5 dB, and Multi-Path Interference (MPI) < -36 dB. MPI phenomena in HOM-DCMs is characterized, and shown to comprise both coherent and incoherent parts, and to result from both the mode transformers and fiber coupling within the HOMF. MPI values of < -36 dB have been shown to allow error free transmission of 10 Gb/s signals over up to 6000 km. Finally, a number of applications well suited to the properties of HOM-DCMs are reviewed.  相似文献   

13.
14.
李筱薇  谭建昌  冯国英 《强激光与粒子束》2021,33(11):111010-1-111010-5
提出一种基于S形-错位结构的全光纤马赫-曾德干涉仪(MZI)双参量传感器。该传感结构是采用单模光纤在光纤熔接机中通过简单的放电和熔接等步骤制备而成。顺时针扭转时, 传感器的传输光谱向短波长方向偏移; 逆时针扭转, 向长波长方向偏移。对传感器的实验研究结果表明,该传感器在光纤横截面上顺时针和逆时针两个旋转方向上的扭曲传感灵敏度分别为?223 pm/(rad·cm?1), 140 pm/(rad·cm?1),且可实现扭转方向的判别,在一定应变范围内的应变灵敏度为0.145×106 dB/ε(这里ε为应变),且温度交叉灵敏度极小,可忽略不计。因此,这种基于单模光纤的纤芯-包层MZI双参量传感器具有传感灵敏度高,体积小巧,工艺简单,成本低廉且可判别扭转方向的优点,有望成为众多双参量测量操作中良好的候选仪器之一。  相似文献   

15.
Wang Y  Xiao L  Wang DN  Jin W 《Optics letters》2007,32(9):1035-1037
A novel in-fiber polarizer based on a long-period fiber grating (LPFG) is written by using a focused CO2 laser beam to notch a photonic crystal fiber periodically. Such a polarizer exhibits a high polarization extinction ratio of more than 20 dB over a wide wavelength range of ~11 nm near 1550 nm and a very low temperature sensitivity of 3.9 pm/ degrees C, which overcomes the disadvantages of the temperature sensitivity of other in-fiber polarizers created on conventional single-mode fiber.  相似文献   

16.
We present an experimental setup to generate radially polarized beams without using high-cost optical elements. In the setup a four-segment polarization converter is used in front of the fiber to produce a pseudo radially polarized beam. A traditional step-index fiber which supports only LP01 and LP11 modes is then used as a mode-cleaning device. A commercial mechanical fiber-squeezer polarization controller is applied to produce adequate pressure and twist onto the fiber. The four-segment polarization converter and the fiber squeezer polarization controller are adjusted by turns for improving the beam quality in intensity and polarization. Additionally, several methods of characterizing the polarization properties of radially polarized beams are reviewed. One of the latest methods is applied for characterizing the polarization properties of the radially polarized beams produced by using our technique. The results show the highquality of the obtained beams.  相似文献   

17.
Space-division multiplexing (SDM) is one of the key enabling technologies to increase the capacity of fiber communication systems. However, implementing SDM-based systems using multimode fiber has been challenging with the need for compact, low-cost, and scalable mode de/multiplexer (DE/MUX). Here a novel integrated mode MUX for few-mode fibers (FMFs) is presented which can launch up to eight spatial and polarization channels. The new design is composed of a 2D multimode grating coupler (MMGC), highly compact spot size converters (SSCs), and adiabatic directional couplers (ADCs). Eight data lanes in FMFs can be selectively launched with integrated optical phase shifters. Experimental results reveal efficient chip-to-fiber coupling with peak efficiencies of −3.8, −5.5, −3.6, and −4.1 dB for LP01, LP11a, LP11b, and LP21b modes, respectively. Thanks to the use of an integrated subwavelength Mikaelian lens for mode-independent field size conversion with loss ≤−0.25 dB, the total footprint of the MMGC and SSCs is only 35×35 µm2. The proposed design shows great potential for densely integrated photonic circuits in future SDM applications.  相似文献   

18.
4 (PPKTP). We generated 12 μW of radiation tunable around 1.6 μm by difference-frequency mixing of the outputs of a frequency-doubled Nd:YLF laser at 523 nm (240 mW) and a tunable Ti:sapphire laser near 760 nm (340 mW). A temperature tuning rate of 0.73 nm/°C for the generated wavelength and a FWHM temperature acceptance bandwidth of 6.9 °C cm was observed. The effective d33 coefficient was estimated to be ∼5 pm/V. Received: 02 September 1998  相似文献   

19.
We present the spectral analysis of higher-order core mode resonances in a long period holey fiber grating induced mechanically in an asymmetric holey fiber. Calculations based on a fast-Fourier transform mode solver shows that the mode resonances obtained experimentally correspond to the odd- and even-LP1,1 core modes. Additionally, we analyze the twist and polarization response of these mode resonances in the long period holey fiber grating. The results obtained in this work are of great importance in the design of new all-fiber optical devices that involve couplings of higher order core modes in asymmetric holey fibers.  相似文献   

20.
A CO2 laser and point-by-point method are used for fabricating step-changed period chirped long-period fiber gratings (LPFG). Several types of period chirped LPFGs have been demonstrated, such as, linearly chirp, peak-shape chirp, and cascaded linearly chirp. Unlike uniform LPFGs, the spectrum change such as multiple attenuation peaks, broader spectrum can be seen in these chirp gratings, and the spectral shape can be controlled by the grating period. Especially, the cascaded linearly chirped LPFGs performs a multi-peak as interference between the core mode and cladding mode, which can be used as multi-wavelength filters in fiber optic communication and fiber optic sensors. Also, a linear tuning range of 1.6 nm with -0.559 pm/με tuning rate is achieved in these types of devices by applying an axial strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号