首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excitation-emission fluorescence spectroscopy and imaging are applied to studies of cellular metabolism and at the convergence of cellular differentiation, detoxification, transformation, and senescence. Metabolic activity, intracellular redox levels, and compartmentation are probed by coenzyme [NAD(P)H] transients and monochlorobimane for glutathione dehydrogenase. Gene expression or its failure in lysosomal disorders is identified with fluorogenic probes. The "multiorganelle detoxification complex" is visualized and investigated with cytotoxic agents. A kind of photoactivated "accelerated cellular senescence" is recognized by accumulation of Schiff bases. Conventional and novel mitochondrial probes are used to localize these organelles in Saccharomyces cerevisiae as a model for future studies in mammalian cells and to detect in these very cells the organelle interactions resulting from the action of mitochondria-toxic drugs. The potential of these studies for biotechnology and instrumentation relying on fibers and integrated optics is considerably enhanced by Fourier interferometry.  相似文献   

2.
综述了细胞衰老诱导因素和衰老细胞的特征,提出细胞衰老在癌症发生发展过程中具有双重作用效应。同时,以X射线和12C6+离子束对黑色素瘤细胞系92-1或人正常成纤维细胞系MRC5进行辐照,观察分析DNA损伤应答效应和细胞衰老诱导。实验结果表明,相对于X射线,12C6+离子束能导致DNA团簇损伤,持续激活DNA损伤应答,更容易诱导细胞衰老;12C6+离子束能同时诱导癌细胞和正常细胞衰老。这些实验结果暗示开展12C6+离子束诱导细胞衰老研究具有紧迫性。  相似文献   

3.
Metal ions are ubiquitous in the biosphere. In living organisms metalloproteins with specifically designed metal cores perform vital chemical processes. On the other hand, several heavy metals are detrimental to living organisms and nature has developed effective enzymatic detoxification systems which convert toxic metal ions to less toxic species. The nuclear spectroscopy technique Time Differential Perturbed Angular Correlation (TDPAC) of γ-rays uses radioactive isotopes as nuclear probes in these metal cores to obtain a better understanding of the structural and functional significance of these metal cores by monitoring the nuclear quadrupole interaction of the TDPAC probe. Since this technique is based on the nuclear decay, it is also applicable under physiological conditions, i.e., especially at picomolar concentrations. For these studies an indispensable prerequisite is the production of the TDPAC probes with highest possible specific activity and purity as is done by the on-line mass separator ISOLDE at CERN in Geneva. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Non-deteriorative cellular functions were examined in Paramecium and found in the cell lines undergoing proliferative senescence. Changes in two kinds of cellular functions, the ability to regenerate cilia and the locomotive function of cilia, were compared between young and old cells. The ability to regenerate cilia after artificial deciliation decreased in old Paramecium cells, but the ability of cilia to swim both forward and backward was stable with age. Our results suggest that morphogenesis of cilia is a deteriorative character, but the locomotive function of cilia is not associated with proliferative senescence.  相似文献   

5.
Magnetic resonance (MR) imaging is capable of demonstrating human anatomy and pathological conditions. Iron oxide magnetic nanoparticles (MNPs) have been used in MR imaging as liver-specific contrast medium, cellular and molecular imaging probes. Because few studies focused on the MNPs other than iron oxides, we developed FeNi alloy MNPs coated with polyethylenimine (PEI). In this study, we demonstrated PEI-coated FeNi MNPs are able to label the cells, which could be detected in MR imaging. For labelling purpose, MNPs were incubated with mouse macrophage cell line (Raw 264.7) for 24 h and these PEI-labelled FeNi alloy MNPs can be uptaken by macrophages efficiently compared with Ferucarbotran, a commercialized superparamagnetic iron oxide (SPIO) under flow cytometry measurement. Besides, these cells labelled with MNPs could be imaged in MR with the identical potency as Ferucarbotran. Further investigation of the cells using Prussian blue staining revealed that FeNi alloy MNPs inside the cells is not oxidized. This phenomenon alleviated the consideration of potential risk of nickel toxicity. We conclude that PEI-coated FeNi MNPs could be candidate for MR contrast medium.  相似文献   

6.
Fluorescence liftime imaging (FLIM) of modified hydrophobic bodipy dyes that act as fluorescent molecular rotors shows that the fluorescence lifetime of these probes is a function of the microviscosity of their environment. Incubating cells with these dyes, we find a punctate and continuous distribution of the dye in cells. The viscosity value obtained in what appears to be endocytotic vesicles in living cells is around 100 times higher than that of water and of cellular cytoplasm.Time-resolved fluorescence anisotropy measurements also yield rotational correlation times consistent with large microviscosity values. In this way, we successfully develop a practical and versatile approach to map the microviscosity in cells based on imaging fluorescent molecular rotors.  相似文献   

7.
There is a growing interest in functional membrane heterogeneity on the mesoscopic (several tens to hundreds of molecular dimensions) scale. However, the physical-chemical basis for this sort of heterogeneity in membranes is not entirely clear. Unambiguous methods to demonstrate that the cell plasma membrane and other cellular membranes are in fact heterogeneous on the mesoscopic level are also not generally available. Fluorescence techniques do, however, provide excellent tools for this purpose. In particular, the emerging techniques of scanning near-field optical microscopy and single-molecule fluorescence microscopy hold a great deal of promise for the near-future. All these methods require the use of fluorescent probes (lipids and/or proteins) and a clear definition of how these probes partition between domains of coexisting membrane phases. The development of the concept of membrane heterogeneity over the years since the first proposal of the fluid mosaic model is reviewed briefly. The use of lipid-binding proteins in experimental protocols for the labeling of membranes with fluorescent lipid amphiphiles as monomers in aqueous solutions at concentrations well above their critical aggregation concentrations is discussed. The methods of fluorescence spectroscopy available to the cell biologist for determining probe partition coefficients for partitioning between coexisting membrane phases are reviewed in some detail, as is the relevant theoretical and experimental work reported in the literature.  相似文献   

8.
A series of functionalized, water-soluble, pH-sensitive pentamethine cyanine (CyTM5) dyes has been designed and synthesized. These probes are fluorescent in acidic media but are non-fluorescent in an alkaline environment. Subtle changes to the structure of these probes can lead to pronounced changes in the pKa of these probes. These probes have been utilized in a cellular environment to detect localized changes in pH using the IN Cell Analyzer, a confocal imager formatted for imaging of cell-based assays.  相似文献   

9.
Nitroxides are widely used as biophysical probes to study molecular motion, intracellular oxygen, pH, transmembrane potential, and cellular redox metabolism, etc. They may be rapidly metabolized to hydroxylamines by cells, which limits their use in viable systems. In this study, we have characterized relevant properties in cells of several isoindoline nitroxides that have been prepared to have different physicochemical properties: 1,1,3,3-tetramethylisoindolin-2-yloxyl (TMIO) and its analogs 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl (CTMIO), 5-(N,N,N-trimethylammonio)-1,1,3,3-tetramethyl isoindolin-2-yloxyl iodide (QATMIO) and 2-hydroxy-1,1,3,3-tetramethylisoindoline hydrochloride (TMIOH.HCI). The oxygen sensitivity and metabolic kinetics of these were compared in CHO cells under different oxygen tensions with 1-oxyl-2,2,6,6-tetramethyl-4-piperidione (Tempone) and 3-carboxyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (PCA). Cytotoxicity was evaluated by the measurement of oxygen consumption rates, trypan blue exclusion, and clone formation. TMIO and its analogues have a higher relative oxygen sensitivity than Tempone and PCA with the oxygen sensitivity in electron paramagnetic resonance (EPR) spectrometry in the order of: TMIO=TMIOH=CTMIO>QATMIO=Tempone<PCA. The rates of metabolism of these nitroxides are moderate and depend on oxygen concentration, ring type, ring substituent, and membrane permeation. These nitroxides have low cytotoxicity. The results indicate that TMIO and its analogues are potentially useful for EPR studies of viable systems, especially for oximetry.  相似文献   

10.
Studies of morphological and ultrastructural alterations in target organs have been useful for evaluating the sublethal effects of biopesticides regarded as safe for non-target organisms in ecotoxicological analyses. One of the most widely used biopesticides is neem oil, and its safety and compatibility with natural enemies have been further clarified through bioassays performed to analyze the effects of indirect exposure by the intake of poisoned prey. Thus, this study examined the cellular response of midgut epithelial cells of the adult lacewing, Ceraeochrysa claveri, to neem oil exposure via intake of neem oil-contaminated prey during the larval stage. C. claveri larvae were fed Diatraea saccharalis eggs treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval stage. The adult females obtained from these treatments were used at two ages (newly emerged and at the start of oviposition) in morphological and ultrastructural analyses. Neem oil was found to cause pronounced cytotoxic effects in the adult midgut, such as cell dilation, emission of cytoplasmic protrusions, cell lysis, loss of integrity of the cell cortex, dilation of cisternae of the rough endoplasmic reticulum, swollen mitochondria, vesiculated appearance of the Golgi complex and dilated invaginations of the basal labyrinth. Epithelial cells responded to those injuries with various cytoprotective and detoxification mechanisms, including increases in cell proliferation, the number of calcium-containing cytoplasmic granules, and HSP 70 expression, autophagic processes and the development of smooth endoplasmic reticulum, but these mechanisms were insufficient for recovery from all of the cellular damage to the midgut. This study demonstrates that neem oil exposure impairs the midgut by causing sublethal effects that may affect the physiological functions of this organ, indicating the importance of studies of different life stages of this species and similar species to evaluate the safe and compatible integrated use of biopesticides.  相似文献   

11.
The photostability is an outstanding feature of quantum dots (QDs) used as fluorescence probes in biological staining and cell imaging. To find out the related factors in the QD photostability, the photobleaching of naked CdTe QDs and BSA coated CdSe/CdS/ZnS QDs in human hepatocellular carcinoma (QGY) cells and human nasopharynx carcinoma (KB) cells were studied under single photon excitation (SPE) and two-photon excitation (TPE). In these two cell lines the cellular QDs were irradiated by a 405 nm continuous wave laser for SPE or an 800 nm femto-second (fs) laser for TPE. The QD photobleaching with the irradiation time was found to fit a biexponential decay. The fast decay plays a dominant role in the bleaching course and thus can be used as the parameter to quantitatively evaluate the QD photostability. The TPE decreased the QD photobleaching as compared to SPE. The BSA coated core/shell QDs had improved the photostability up to 4-5 times than the naked QDs due to the shielding effect of the QD shell. Therefore, it is better to use core/shell structured QDs as the fluorescence probe combining with a TPE manner for those long-term monitoring studies.  相似文献   

12.
Polyethyleneimine (PEI) is one of the very efficient nonviral vectors being developed and tested for artificial gene transfer into target cells. One of its serious limitations is the significant cytotoxicity of the large amounts of free PEI in the mixtures of DNA and PEI used for transfection. To further investigate the cellular effects of free PEI, we have analyzed the PEI-induced alterations of various cell parameters such as membrane heterogeneity and fluidity, cytoplasmic pH, and plasma membrane potential in a variety of cells such as Swiss 3T3 fibroblast, Chinese hamster ovary, insect cells SF9, plant cell line BY2, and Saccharomyces cerevisae. Fluorescence probes such as Nile red, SNARF-1, and cyanine dye DiSC2(3), coupled with the technique of picosecond time-resolved fluorescence microscopy, were used in estimating the above-mentioned cell parameters. It was found that the cell membranes were largely unperturbed by PEI. However, the cytoplasmic pH showed an increase of 0.1–0.4 units when the cells were treated with PEI. The plasma membrane potential was found to be depolarized in S. cerevisae and Swiss 3T3 cells. These results suggest that the cytotoxic effects of PEI may partly originate from inhibition of regulation of cytoplasmic pH and plasma membrane potential. Further, it is proposed that the resultant cell alterations favors the transfection process.  相似文献   

13.
Three new diphenylhexatriene derivatives, two phospholipids and one single-chain amphiphilic molecule, have been synthesized and considered as probes for measuring membrane fluidity by fluorescence anisotropy. The possibility of using these probes to determine specifically fluidity of inner leaflets of cellular plasma membranes was inferred from their partitioning properties between gel and liquid crystalline phases of phospholipid vesicles of binary composition.  相似文献   

14.
Fluorescent probes, which allow visualization of cations such as Ca(2+), Zn(2+) etc., small biomolecules such as nitric oxide (NO) or enzyme activities in living cells by means of fluorescence microscopy, have become indispensable tools for clarifying functions in biological systems. This review deals with the general principles for the design of bioimaging fluorescent probes by modulating the fluorescence properties of fluorophores, employing mechanisms such as acceptor-excited Photoinduced electron Transfer (a-PeT), donor-excited Photoinduced electron Transfer (d-PeT), and spirocyclization, which have been established by our group. The a-PeT and d-PeT mechanisms are widely applicable for the design of bioimaging probes based on many fluorophores and the spirocyclization process is also expected to be useful as a fluorescence off/on switching mechanism. Fluorescence modulation mechanisms are essential for the rational design of novel fluorescence probes for target molecules. Based on these mechanisms, we have developed more than fifty bioimaging probes, of which fourteen are commercially available. The review also describes some applications of the probes developed by our group to in vitro and in vivo systems.  相似文献   

15.
The biological and toxicological effects that have been attributed to reactive nitrogen species (RNS) are increasingly stirring the scientific inquisitiveness about the molecular mechanisms involved. However, RNS present some characteristics that complicate their detection, namely their short lifetime and the normal presence of a variety of endogenous compounds capable of reacting with these reactive species, when the studies are performed in biological matrices. The development of methodologies capable of circumvent these difficulties is thus of fundamental importance. Fluorescence probes are particularly important due to their high sensibility and usefulness in temporal and spatial monitoring of RNS, particularly in microanalysis conditions in biological media akin to cells or tissues. In the present review is given an account of the fluorescence probes that have been used for detection of nitric oxide (NO), peroxynitrite anion (ONOO), as well as of some of its derivatives in biological and nonbiological media.  相似文献   

16.
Hydrostatic pressure is a physical factor that can induce stress in organisms. This stress leads to growth inhibition, cellular arrest, and cellular death, and these effects depend on the degree of pressure, temperature, and sensitivity of the organisms to hydrostatic pressure. Genomics studies of yeast cells under conditions recovering from high pressure-induced cellular damage showed evidence that multiprotein complexes or membrane proteins, and not soluble proteins, are the critical targets. We performed a metabolomic analysis. The metabolomics results suggested that membrane-spanning proteins broke down after high pressure treatment and recovery conditions. We also found 13 genes that were common to essential and pressure-induced gene groups. Among these 13 genes, more than 10 were associated with proteasome structure and functions. This suggests that proteasome structure or functions can be the critical target or a highly important factor. This hypothesis is supported by the fact that yeast cells are sensitive to the proteasome inhibitor MG132 after high pressure treatment.  相似文献   

17.
Quantum dots (QDs), as novel fluorescence probes, have shown a great potential for bio-molecular labeling and cellular imaging. To stain cellular targets, the sufficient intracellular delivery of QDs is required. In this work the tat, a typical membrane-permeable carrier peptide, was conjugated with thiol-capped CdTe QDs to form CdTe Tat-QDs, and the intracellular deliveries of CdTe QDs or CdTe Tat-QDs were compared in human hepatocellular carcinoma (QGY) cells and human breast cancer (MCF7) cells in vitro by means of confocal laser scanning microscopy. Added into the cell dishes, both QDs and Tat-QDs adhered to the outer leaflet of the plasma membrane of cells within a few minutes, but the binding amount of Tat-QDs was obviously higher than that of QDs. Then both QDs and Tat-QDs can penetrate into cells, and their cellular contents increased with incubation time but both saturated after 3 hours incubation. However the cellular levels of Tat-QDs were higher than those of QDs, with the ratio of 2.1 (±0.3) times in QGY cells and 1.5 (±0.2) times in MCF7 cells, demonstrating the enhancing effect of Tat conjugation on the intracellular delivery of QDs.  相似文献   

18.
The red blood cells (RBCs) are among the most simple and less expensive cells to purify; for this reason and for their physiological relevance, they have been extensively studied with a variety of techniques. The picture that results is that these cells have several peculiarities including extreme mechanical performances, relatively simple architecture, biological relevance and predictable behavior that make them a perfect laboratory of testing for novel techniques, methodologies and ideas. These include the re-evaluation of old concepts, such as the relationship between structure and function (which is one of the guideline of this report) but considered at the cellular level. The studies reported on this paper, indeed, exploit the full potential of an high resolution quantitative microscopy such as the atomic force microscopy (AFM) to investigate different aspect of the erythrocytes' life, death and interaction with the environment. Indeed, the erythrocytes have a special relationship with the environment that is able to deeply influence their morphology as consequence of alteration of their biochemical or biophysical status. In this context the conditions under which the erythrocytes can be considered as biochemically programmable systems have been investigated by analyzing different environmentally induced alteration of the cell's morphology and comparing the results with naturally occurring pathological morphologies. This class of studies takes great advantage by the additional consideration of the nanomechanical properties of the cells. These latter are particularly important for the cell functionality and are shown to be of practical usefulness to discriminate and partition environmental effects charging different cellular structure (e.g. membrane or membrane-skeleton). Moreover, the development of novel morphological parameter can be important to push the level of investigation on the RBCs' status towards the molecular level. In particular, we describe the introduction and use of the plasma membrane roughness as a morphometric parameter of simple derivation from the AFM images and that results sensitive to the structural integrity of the cells' membrane-skeleton. This offer a remarkable opportunity to investigate the relationship between structure and function in normal and pathological cells by using a morphometric parameter that probes the cell surface at the nanoscale level. At last, a complex but physio-pathologically important phenomenon such as the erythrocytes aging was considered. To properly analyze the many variation that the cells experience during the whole aging path we used all the parameters that the AFM can provides: quantitative imaging, analysis of the membrane roughness and local measure of the nanomechanical properties analyzed together with biochemical parameter such as the ATP content. The picture that emerged is that the aging path is triggered by the ATP intracellular concentration that influence the membrane-skeleton structure and the support exerted on the plasma membrane. The consequences of the membrane-skeleton involvement can be monitored by AFM and showed the occurrence of peculiar morphologies and morphological defects that appear in the very place where the membrane-skeleton contact with the membrane became loose. As a whole, the collected data enable to describe the entire phenomenon as a sequence of morphological intermediates following one another along the aging path.  相似文献   

19.
The local pH inside individual live glioma (U‐87 MG) cancer cells was monitored after treatment by the photodynamic therapy drug 6‐methyl‐1,3,8‐trihydroxyanthraquinone (emodin). The cellular pH is tracked by the real‐time measurement of the surface‐enhanced Raman scattering (SERS) from a probe that is embedded in the cell. The probe is a micrometer‐sized silica bead that is covered by nanosized silver colloids, which enhance Raman signal, and 4‐mercaptobenzoic acid (pMBA) whose molecular vibrations and resulting Raman spectrum are sensitive to pH. Visible excitation at different light dosages is used to activate the drug. The results indicate cell maintenance of internal pH and cell death at low and high light dosage, respectively. We demonstrate that these SERS probes are an effective tool for ex vivo pH monitoring in a live cell thanks to their high optical sensitivity and noninvasive usage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
刘娇娇  常琪  鲍美美  元冰  杨恺  马余强 《中国物理 B》2017,26(9):98102-098102
Imaging-guided cancer therapy provides a simultaneous tumor imaging and treatment, which helps to eliminate the excessive toxicity to the healthy tissues. For this purpose, multifunctional probes capable of both imaging and curing are needed. In this work, we synthesize water-soluble silicon quantum dots(Si QDs) smaller than 5 nm. Such Si QDs are used for delivering the hydrophobic drug phthalocyanine(Pc). The as-prepared Si/Pc nanocomposite particles show efficient transmembrane delivery into cells and feasible biocompatibility. Moreover, these composite particles emit dualchannel fluorescence signals even after cellular internalization and demonstrate robust photostability in the Si channel.More interestingly, the Si/Pc composite particles show efficient photodynamic therapy effects against tumors both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号