首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A fiber-optic chemical sensor (FOCS) for detection of nitrogen dioxide (NO2) molecules is reported. The FOCS presents an optropode structure because of the transmission properties of the sensitive material. The NO2 FOCS is activated by using the semiconductor polymer: regioregular head-to-tail poly(3-octylthiophene-2,5-diyl). The operation wavelength of the sensor is 543.5 nm such that a simple LED and detector can be used for the design of this device. The sensor response decreases after each exposure, demonstrating the reduction in sensitivity as well as irreversibility lower than 5%. However, its properties such as rapid response, high selectivity, high sensitivity (0.43 ± 0.01 muW/ppm), hygroscopic properties, and its operation at room temperature make this kind of FOCS a good alternative for NO2 toxic gas detection.  相似文献   

2.
The effect of thickness of oxide-sensing electrode (SE) on NO2 sensitivity of the planar sensor based on yttria-stabilized zirconia (YSZ) was examined at high temperatures. The sensitivity of the sensor increased with decreasing thickness of SE, and the highest sensitivity was obtained by using the thinnest layer of Cr2O3–SE (2.7 μm) at 700 °C. In the case of NiO–SE, the highest sensitivity was observed for the sensor using the 4-μm-thick SE even at a high temperature of 850 °C. Based on the results of the measurements for the complex impedances, the polarization curves, and the gas-phase NO2 decomposition catalysis, it was confirmed that the catalytic activity to the gas-phase NO2 decomposition on the oxide–SE matrix played an important role in determining the NO2 sensitivity of the present sensors.  相似文献   

3.
Nickel oxide and chromium-doped nickel oxide (Ni0.95Cr0.03O1−δ ) were prepared by thermal decomposition of nitrates. The obtained NiO and Ni0.95Cr0.03O1−δ samples were utilized as sensing electrodes (SEs) in yttria-stabilized zirconia (YSZ)-based sensors for detection of NO2 at 800 °C under wet condition (5 vol.% H2O). While the mixed-potential-type planar sensor attached with NiO-SE gave rather large NO2 sensitivity, the sensor attached with Ni0.95Cr0.03O1−δ -SE exhibited fast recovery rate with an acceptable sensitivity. The Δemf (electromotive force) of the sensors varied linearly with NO2 concentration in the examined range of 50–400 ppm on a logarithmic scale. Based on the results of measurements for polarization, complex impedance and gas phase catalysis, the fast recovery was attributable to the high rate for the anodic reaction of O2 at the Ni0.95Cr0.03O1−δ /YSZ interface, and the lower NO2 sensitivity was caused by both the high rate for the anodic reaction of O2 and the high degree for the gas phase conversion of NO2 to NO.  相似文献   

4.
The effect of thickness of oxide-sensing electrode (SE) on NO2 sensitivity of the planar sensor based on yttria-stabilized zirconia (YSZ) was examined at high temperatures. The sensitivity of the sensor increased with decreasing thickness of SE, and the highest sensitivity was obtained by using the thinnest layer of Cr2O3–SE (2.7 μm) at 700 °C. In the case of NiO–SE, the highest sensitivity was observed for the sensor using the 4 μm-thick SE even at high temperature of 850 °C. Based on the results of the measurements for the complex impedances, the polarization curves, and the gas-phase NO2 decomposition catalysis, it was confirmed that the catalytic activity to the gas-phase NO2 decomposition on the oxide–SE matrix played an important role in determining the NO2 sensitivity of the present sensors. This artice was accidentally published twice. This is the second publication, please cite only the authoritative first one which is available at . An additional erratum is available at . An erratum to this article can be found at  相似文献   

5.
The nanostructured thin NiO films with the thicknesses of 30–180 nm were examined as a sensing electrode (SE) for the planar mixed-potential-type yttria-stabilized zirconia (YSZ)-based NO2 sensor. The sensing characteristics were examined in the temperature range of 600–800 °C under the wet condition (5 vol.% water vapor). Among the NiO-SEs tested, the 60 nm-thick NiO-SE sintered at 1,000 °C was found to give the highest NO2 sensitivity in the NO2 concentration range of 50–400 ppm accompanying with fast response/recovery at the operating temperatures of 600–700 °C. The high NO2 sensitivity was attributed to the high catalytic activity for both electrochemical reactions of O2 and NO2 at the interface of NiO-SE/YSZ. The ultrathin gold layer with the thickness of about 60 nm was additionally formed on the 60 nm-thick NiO-SE to fabricate the laminated-type (60 nm NiO/60 nm Au)-SE. It was demonstrated that the use of this laminated (NiO–Au)-SE improved both the sensitivity and the selectivity to NO2.  相似文献   

6.
WO3 nanoparticles were prepared by evaporating tungsten filament under a low pressure of oxygen gas, namely, by a gas evaporation method. The crystal structure, morphology, and NO2 gas sensing properties of WO3 nanoparticles deposited under various oxygen pressures and annealed at different temperatures were investigated. The particles obtained were identified as monoclinic WO3. The particle size increased with increasing oxygen pressure and with increasing annealing temperature. The sensitivity increased with decreasing particle size, irrespective of the oxygen pressure during deposition and annealing temperature. The highest sensitivity of 4700 to NO2 at 1 ppm observed in this study was measured at a relatively low operating temperature of 50 °C; this sensitivity was observed for a sensor made of particles as small as 36 nm.  相似文献   

7.
This work studied the possibility of using a sensor based on plasma-sprayed zinc oxide (ZnO) sensitive layer for NO2 detection. The atmospheric plasma spray process was employed to deposit ZnO gas sensing layer and the obtained coating structure was characterized by scanning electron microscopy and X-ray diffraction analysis. The influences of gas concentration, working temperature, water vapor in testing air on NO2 sensing performance of the ZnO sensors were studied. ZnO sensors showed a good sensor response and selectivity to NO2 at an optimal working temperature.  相似文献   

8.
The dispersal of CuO catalyst on the surface of the semiconducting SnO2 film is found to be of vital importance for improving the sensitivity and the response speed of a SnO2 gas sensor for H2S gas detection. Ultra-thin CuO islands (8 nm thin and 0.6 mm diameter) prepared by evaporating Cu through a mesh and subsequent oxidation yield a fast response speed and recovery. Ultimately nanoparticles of Cu (average size = 15 nm) prepared by a chemical technique using a reverse micelle method involving the reduction of Cu(NO3)2 by NaBH4 exhibited significant improvement in the gas sensing characteristics of SnO2 films. A fast response speed of ∼14 s and a recovery time of ∼60 s for trace level ∼20 ppm H2S gas detection have been recorded. The sensor operating temperature (130° C) is low and the sensitivity (S = 2.06 × 103) is high. It is found that the spreading over of CuO catalyst in the nanoscale range on the surface of SnO2 allows effective removal of excess adsorbed oxygen from the uncovered SnO2 surface due to spill over of hydrogen dissociated from the H2S-CuO interaction.  相似文献   

9.
P-type porous silicon (PS) structure has been prepared by anodic electrochemical etching process under optimized conditions. Photoluminescence studies of the PS structure show emission at longer wavelengths (red) for the excitation at 365 nm. Scanning electron microscope investigations of the PS surface confirm the formation of uniform porous structure, and the pore diameter have been estimated as 25 μm. Pd:SnO2/PS/p-Si heterojunction with top gold ohmic contact developed by conventional methods has been used as the sensor device. Sensing properties of the device towards liquefied petroleum gas (LPG) and NO2 gas have been investigated in an indigenously developed sensor test rig. The response and recovery characteristics of the sensor device at different operating temperatures show short response time for LPG. From the studies, maximum sensitivity and optimum operating temperature of the device towards LPG and NO2 gas sensing has been estimated as 69% at 180 °C and 52% at 220 °C, respectively. The developed sensor device shows a short response time of 25 and 57 s for sensing LPG and NO2 gases, respectively. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006.  相似文献   

10.
陈慧卿  胡明  曾晶  王巍丹 《中国物理 B》2012,21(5):58201-058201
The NO2 gas sensing behavior of porous silicon(PS) is studied at room temperature with and without ultraviolet(UV) light radiation.The PS layer is fabricated by electrochemical etching in an HF-based solution on a p +-type silicon substrate.Then,Pt electrodes are deposited on the surface of the PS to obtain the PS gas sensor.The NO2 sensing properties of the PS with different porosities are investigated under UV light radiation at room temperature.The measurement results show that the PS gas sensor has a much higher response sensitivity and faster response-recovery characteristics than NO2 under the illumination.The sensitivity of the PS sample with the largest porosity to 1 ppm NO2 is 9.9 with UV light radiation,while it is 2.4 without UV light radiation.We find that the ability to absorb UV light is enhanced with the increase in porosity.The PS sample with the highest porosity has a larger change than the other samples.Therefore,the effect of UV radiation on the NO2 sensing properties of PS is closely related to the porosity.  相似文献   

11.
通过在水热合成后追加退火处理,制备了径向生长的具有分级结构的树枝状三维Co3O4晶体,并用X射线衍射仪、扫描电子显微镜和透射电子显微镜对其结构和形貌进行了表征. 在110 oC对其气体探测性能的研究表明这种Co3O4分级结构对氨气有较高的探测灵敏度和响应速度(10 s),性能稳定并具有可重复性. 同时,还在较低的探测温度下对酒精、丙酮和苯进行了气敏探测.  相似文献   

12.
The detailed reaction mechanism of 1-chloroethyl radical with NO2 is investigated theoretically. The results show that the title reaction is more favourable on the singlet potential energy surface than on the triplet one. For the singlet PES of CH3CHCl?+?NO2, it is shown that the CH3CHCl radical can react with NO2 to barrierlessly generate adduct a (H3CHClCNO2), b1 (H3CHClCONO-trans), and b2 (H3CHClCONO-cis), respectively. A total of six energetically reaction pathways and ten products are found. However, the most competitive path way is P1 (CH3CHO?+?ClNO), which can further dissociate to give P6 (CH3CHO?+?Cl?+?NO) and P2 (CH3CClO?+?HNO). The present results can lead to a deep understanding of the mechanism of the title reaction and may be helpful for understanding the halogenated ethyl chemistry.  相似文献   

13.
A photonic crystal fiber sensor based on differential optical absorption spectroscopy for mixed gas detection is presented. In such sensor, hollow core photonic crystal fiber is utilized as gas cell and the feasibility for gas detection is verified by experiment. The components concentration of mixed gas NH3 and C2H2 are measured and the detection sensitivity is 143 ppmv.  相似文献   

14.

In this work, we investigate the performance of a novel integrated acousto-optical temperature sensor fabricated in LiNbO3 and operating with ultrashort light pulses (2 ps). Five parameters (time duration, bandwidth, time intensity maximum, frequency intensity maximum, and output energy on the output pulse converted for the TM mode, as a function of temperature) were observed for the switched pulse at the output of the sensor (TM mode) with and without the presence of an increasing linear self-phase modulation (SPM) profile. Comparing all analyzed parameters, one can conclude that the pulse intensity is presenting the larger variation (100.09%) as a function of the temperature change (24.5 to 400°C) in a configuration without profile. Considering the increasing linear SPM profile, all the analyzed parameters are presenting a significant increase in the percentile variations in the studied range of temperature (24.5 to 400°C). Comparing all the five parameters, in two configurations (with and without the use of linear SPM profile), one can conclude that the time intensity maximum showed to be the most suitable parameter as measurement to be accomplished in a schematic detection for the temperature sensing in the range 24.5 to 400°C. We can conclude that the sensitivity of the AOTS is improving in the configuration with the increasing nonlinearity profile (β = 2) and for higher temperature.  相似文献   

15.
Electrochemical sensors using tubular yttria-stabilized zirconia (YSZ) and oxide sensing electrode (SE) were fabricated and examined for NOx detection at high temperatures. The mixed-potential-type NOx sensor using ZnO-SE gave the highest sensitivity to NOx among other single-type oxides tested as SEs in the temperature range of 600–700 °C. The response of the ZnO-attached device was a linear for the logarithm of NO2 (NO) concentrations from 40 to 450 ppm. The sensing mechanism of the sensor was discussed on the basis of the gas adsorption-desorption behavior, the catalytic activity data, and electrochemical behavior for oxides examined.  相似文献   

16.
A lithium niobate (LiNbO3) broad-band photonic sensor using reflection-type Mach-Zehnder optical waveguide modulator has been designed, fabricated, and experimentally demonstrated. The bare chip size of the sensor is microminiaturized as small as 20×5×0.5 mm3. The sensor has a wide band frequency response from 10 kHz to 20 GHz with variation less than ± 5 dB. The sensor system shows better linear characteristic from 100 mV/m to 700 V/m, and the sensitivity is 33 mV/m. Besides, the nanosecond EMP with intensity of 30 kV/m has been measured in the time domain.  相似文献   

17.
利用密度泛函理论通过计算吸附能量、HOMO/LUMO能隙变化、电荷转移、结构扭曲等研究二氧化氮分子在B12N12纳米笼的吸附.此外,通过计算B12N12的电子结合能、Gibbs自由能、态密度和分子表面的静电势研究其稳定性和其它特性.B12N12纳米笼吸附二氧化氮显示三种构型.B12N12团簇的HOMO/LUMO能隙变化对二氧化氮分子的存在非常敏感,从自由团簇的6.84 eV降为NO2/团簇稳定团簇的3.23 eV.团簇的导电性被极大地提高,表明B12N12纳米簇可能是潜在的二氧化氮气体分子检测传感器.  相似文献   

18.
This article reports the gas-sensing capability of nanocrystalline (NC) transition metal-coated piezoelectric quartz crystal (PQC). NC transition metal particles of Pd and Ag with particles size of 10–15 nm, while Pt and Au are 20–25 nm are used. The NC particles deposited on the quartz substrate adsorbs gaseous pollutants, thereby increasing the weight of the quartz substrate and decreasing its vibration frequency. We have found that transition metals, Pd, Pt, Au, and Ag in particular, show good sensitivity for NH3-detection; the maximum frequency change occurs at 150°C for Pd and Pt and at 100°C for Au and Ag. The NC Pd- and NC Pt-coated PQC also show good sensitivity for CO2-detection at 150°C. Likewise, the NC Au-coated PQC shows very good sensitivity for NO2-detection but at a higher temperature (180°C). The frequency change as a function of the pollutant gas concentration ( f-curve) follows the Langmuir adsorption isotherm (unimolecular adsorption) except in the case of NC Pd-coated PQC under NH3 and NC Au-coated PQC under NO2. The f-curve for the NC Pd-coated PQC is convex with respect to the NH3 concentration axis. The f-curve for the NC Au-coated PQC is convex in the low NO2 concentration region, and concave in the high NO2 concentration region. Both curves indicate multi-molecular adsorption, Type III and Type V adsorption, respectively. Therefore, the good sensitivity and stability of these gas sensors can be attributed to physical adsorption of the pollutant gases as a result of van der Waals attraction.  相似文献   

19.
We present a multi-species mole fraction and temperature sensor for in situ exhaust gas diagnostic of internal combustion (IC) engines. The sensor is based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) and incorporates four optical channels - two miniature White cells and two double-traversal cells - with base lengths of 6?cm. It has been demonstrated at a hot air test stand and in the exhaust manifold of a single-cylinder research engine, with measured temperatures of up to 1000?K. Stable operation was achieved with absorption lengths of up to 192?cm (test stand) and 97?cm (engine). Employing time-division multiplexed detection, six species were measured simultaneously in the engine exhaust, at wavelengths ranging from 1.4?µm to 5.2 µm: water vapor (H2O), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nitrogen dioxide (NO2) and nitric oxide (NO). The effective measurement rate was as high as 1?kHz, and cycle-to-cycle variations were clearly detected. We show the correlation of the air-fuel equivalence ratio with the spectroscopically measured mole fraction of each species. At a cycle-resolved rate, detection limits for the legally regulated species NO and NO2 were 1?ppm and 4?ppm, respectively. The sensor is intended to help improve the understanding of IC engine emission behavior during fast transients.  相似文献   

20.
A mixed potential type yttria-stabilized zirconia-based sensor using NiO sensing electrode and Pt reference electrode was fabricated, and its NO2 sensing characteristics were examined at various operating temperatures in the range of 700–950 °C. It was observed that the sensitivity to NO2 strongly depends on the operating temperature of the sensor; the sensitivity decreases with increasing operating temperature, while the response/recovery rates increase. To rationalize this temperature dependence of NO2 response, polarization curves and complex impedances of the sensor were measured in the base gas and in the sample gas (400 ppm NO2?+?base gas) at various operating temperatures. It turned out that the operating temperature had a strong influence on the rate of anodic reaction of oxygen; the increased rate of anodic reaction leads to lower NO2 sensitivity and quicker response/recovery at higher operating temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号