首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanism of the cycloadditional reaction between singlet germylidene (R1) and formaldehyde (R2) has been investigated with MP2/6‐31G* method, including geometry optimization, and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//MP2/6‐31G* method. From the potential energy profile, it can be predicted that the dominant reaction pathway of the cycloadditional reaction between singlet germylidene and formaldehyde is reaction (4) , which consists of three steps: the two reactants (R1, R2) first form an intermediate INT1b through a barrier‐free exothermic reaction of 28.1 kJ/mol; this intermediate reacts further with formaldehyde (R2) to give an intermediate INT4, which is also a barrier‐free exothermic reaction of 37.2 kJ/mol; subsequently, the intermediate INT4 isomerizes to a heteropolycyclic germanic compound P4 via a transition state TS4, for which the barrier is 18.6 kJ/mol. The dominant reaction has an excellent selectivity and differs considerably from its competitive reactions in thermodynamic property and reaction rate. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

2.
The mechanism of cycloaddition reaction between singlet dimethylmethylenesilylene and formaldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of different conformations are calculated by CCSD(T)//MP2/6‐31G* method. From the potential energy surface, it can be considered in thermodynamics and dynamics that reaction (1) and reaction (4) are the two dominant competitive reaction channels of cycloaddition reaction between dimethylmethylenesilylene and formaldehyde. The reaction process of reaction (1) is that: the two reactants (R1, R2) first form intermediates INT1a and INT1b through two reaction paths, a and b, which are barrier‐free exothermic reactions of 31.8 and 43.9 kJ/mol; then, INT1a and INT1b isomerize to a four‐membered ring product P1 via transition states TS1a and TS1b, with energy barriers of 26.3 and 24.4 kJ/mol. Reaction (4) also has two reaction paths, a and b, each of which consists of three steps are as follows: (i) the two reactants (R1, R2) first form intermediates INT3a and INT3b, which are barrier‐free exothermic reactions of 64.5 and 44.2 kJ/mol. (ii) INT3a and INT3b further react with formaldehyde (R2) to form intermediates INT4a and INT4b, through barrier‐free exothermic reactions of 22.9 and 22.2 kJ/mol. (iii) INT4a and INT4b then isomerize to form silapolycyclic product P4 via transition states TS4a and TS4b, with energy barriers of 39.7 and 29.3 kJ/mol. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

3.
The cycloaddition mechanism of forming a polycyclic compound between singlet dimethylmethylene carbene(R1) and formaldehyde(R2) has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated with CCSD(T)//MP2/6‐31G* method. From the potential energy profile, it can be predicted that the dominant reaction pathway of the cycloadditional reaction between singlet dimethylmethylene carbene and formaldehyde consists of two steps: (1) the two reactants(R1, R2) firstly form an energy‐enricheded intermediate (INT1a) through a barrier‐free exothermic reaction of ΔE = 11.3 kJ/mol. (2) Intermediate (INT1a) then isomerizes to a three‐membered product (P1) via a transition state (TS1a) with an energy barrier of 20.0 kJ/mol. The dominant reaction has an excellent selectivity and differs considerably from its competitive reactions in reaction rate. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

4.
The mechanism of the cycloaddition reaction of singlet stannylene and ethylene or formaldehyde has been studied by using density functional theory. The geometrical parameters, harmonic vibrational frequencies and energies of stationary points for potential energy surface are calculated by RB3LYP/3–21G* method. The results show that the two reaction processes are both two steps: (1) stannylene and ethylene or formaldehyde form an energy‐rich intermediate complex respectively, which is an exothermal reaction with no barrier; (2) two intermediate complexes isomerize to the product, respectively, with the barriers of these two reactions being 52.97 and 45.15 kJ/mol at RB3LYP/3–21G* level.  相似文献   

5.
Mechanism of the cycloadditional reaction between singlet dimethyl‐germylidene (R1) and ethylene (R2) has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//MP2/6‐31G* method. From the potential energy profile, it can be predicted that the dominant reaction pathway of the cycloadditional reaction of forming a heteropolycyclic germanic compound between singlet dimethyl‐germylidene and ethylene consists of three steps: (1) the two reactants (R1, R2) first form a three‐membered intermediate (INT1) through a barrier‐free exothermic reaction of 39.6 kJ/mol. (2) Three‐membered intermediate (INT1) isomerizes to an active four‐membered intermediate (INT2) via a transition state (TS2), for which the barrier is 50.1 kJ/mol. (3) Four‐membered intermediate (INT2) reacts further with ethylene (R2) to form a heteropolycyclic germanic compound (P3), which is also a barrier‐free exothermic reaction of 87.7 kJ/mol. This dominant reaction has an excellent selectivity and differs considerably from its competitive reactions in thermodynamic property and reaction rate. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

6.
Mechanism of the cycloadditional reaction between singlet dichloro-germylidene and formaldehyde has been investigated with MP2/6-31G* method, including geometry opti-mization, vibrational analysis and energies for the involved stationary points on the poten-tial energy surface. From the potential energy profile, we predict that the cycloaddition reaction between singlet dichloro-germylidene and formaldehyde has two competitive dom-inant reaction pathways, going with the formation of two side products (INT3 and INT4), simultaneously. Both of the two competitive reactions consist of two steps, two reactants firstly form a three-membered ring intermediate INT1 and a twisted four-membered ring intermediate INT2, respectively, both of which are barrier-free exothermic reactions of 41.5 and 72.3 kJ/mol; then INT1 isomerizes to a four-membered ring product P1 via transition state TS1, and INT2 isomerizes to a chlorine-transfer product P2 via transition state TS2,with the barriers of 2.9 and 0.3 kJ/mol, respectively. Simultaneously, P1 and INT2 further react with formaldehyde to form INT3 and INT4, respectively, which are also barrier-free exothermic reaction of 74.9 and 88.1 kJ/mol.  相似文献   

7.
The mechanism of the cycloaddition reaction of forming germanic bis-heterocyclic compound between singlet germylene carbene and acetone has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD (T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the dominant reaction pathway of the cycloadditional reaction of forming germanic bis-heterocyclic compound consists of three steps: (1) the two reactants firstly form an intermediate INT4 through a barrier-free exothermic reaction of 181.4 kJ/mol; (2) INT4 further reacts with acetone (R2) to form an intermediate (INT5), which is also a barrier-free exothermic reaction of 148.9 kJ/mol; (3) INT5 then isomerizes to a germanic bis-heterocyclic product P5 via a transition state TS5 with an energy barrier of 53.3 kJ/mol.  相似文献   

8.
The mechanism of the cycloaddition reaction of forming a silapolycyclic compound between singlet silylidene and formaldehyde has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the cycloaddition reaction process of forming the silapolycyclic compound (P2) for this reaction consists of four steps: (I) the two reactants first form a semi-cyclic intermediate INT1a through a barrier-free exothermic reaction of 32.5 kJ mol−1; (II) this intermediate then isomerizes to an active four-membered ring intermediate INT1 via a transition state TS1a with an energy barrier of 30.8 kJ mol−1; (III) INT1 further reacts with formaldehyde to form an intermediate INT2, which is also a barrier-free exothermic reaction of 30.1 kJ mol−1; (IV) INT2 isomerizes to a silapolycyclic compound P2 via a transition state TS2 with a barrier of 50.6 kJ mol−1. Comparing this reaction path with other competitive reaction paths, we can see that this cycloaddition reaction has an excellent selectivity.  相似文献   

9.
硅烯与甲醛环加成反应的理论研究   总被引:3,自引:0,他引:3  
卢秀慧  王沂轩  刘成卜  邓从豪 《化学学报》1998,56(11):1075-1080
本文用RHF/6-31G^*解析梯度方法研究了单重态硅烯与甲醛环加成反应的机理,用二级微扰方法对各构型的能量进行了相关能校正,并用统计热力学方法和过渡态理论计算了该反应在不同温度下的热力学函数的变化和动力学性质。结果表明,此反应历程由两步组成:1)硅烯与甲醛生成一中间配合物,是一无势垒的放热反应,2)中间配合物异构化为产物,此步势垒经零点能校正后只有51.4kJ·mol^-^1(MP2/6-31G^*//6-31G^*);从热力学和动力学的综合角度考虑,该反应在300~400K温度下进行为宜,如此,反应既有较大的自发趋势和平衡常数,又具有较快的反应速率。  相似文献   

10.
The mechanism of the cycloaddition reaction between singlet dimethyl‐silylene carbene and formaldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by zero‐point energy and CCSD (T)//MP2/6‐31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The main products of first dominant reaction pathway are a planar four‐membered ring product (P4) and its H‐transfer product (P4.2). The main product of second dominant reaction pathway is a silicic bis‐heterocyclic compound (P5). © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

11.
The complex triplet potential energy surface of the C2H3N system is investigated at the UB3LYP and CCSD(T) (single-point) levels in order to explore the possible reaction mechanism of C2H3 radical with N(4S). Eleven minimum isomers and 18 transition states are located. Possible energetically allowed reaction pathways leading to various low-lying dissociation products are obtained. Starting from the energy-rich reactant C2H3+N(4S), the first step is the attack of the N atom on the C atom having one H atom attached in C2H3 radical and form the intermediate C2H3N(1). The associated intermediate 1 can lead to product P1 CH2CN+H and P2 3CH2+3HCN by the cleavage of C–H bond and C–C bond, respectively. The most favorable pathway for the C2H3+N(4S) reaction is the channel leading to P1, which is preferred to that of P2 due to the comparative lower energy barrier. The formation of P3 3C2H2+3NH through hydrogen-abstraction mechanism is also feasible, especially at high temperature. The other pathways are less competitive comparatively.  相似文献   

12.
A detailed mechanistic study of the OH + HCNO reaction, in which the products P i with i=1, 2, . . . ,7 are involved, is carried out by means of CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p)+ZPVE computatio-nal method to determine a set of reasonable pathways. It is shown that P 6 (CO + H2NO) and P 3 (HNO +HCO) are the major product channels with a minor contribution from P 5 (NO + H2CO), whereas the other channels for P 1 (H2O + NCO), P 2 (NH2 + CO2), P 4 (HCN + HO2) and P 7(CO + H2 + NO) are less favorable. All these theoretical results are in harmony with experimental facts.  相似文献   

13.
Mechanisms of cycloaddition reaction between singlet dichloro-vinylidene (R1) and ethylene (R2) have been investigated with MP2 and B3LYP /6-31G* methods, including geometry optimization, vibrational analysis, and energy for the involved stationary points on the potential energy surface. CCSD(T)/6-31G* single point calculations are also applied to the geometries from both methods. CCSD(T) relative energies for the stationary points predicted by MP2 and B3LYP are in a very good agreement. Three reaction pathways are located. Along the first one, one intermediate (INT1) is firstly generated, which then rearranges into a three-membered ring compound (P1) via a small barrier of 5.4 kJ/mol; the other two paths share the other intermediate (INT2), which isomerizes into two four-membered ring compounds (P2 and P3) via a chlorine and a hydrogen transfer, respectively. The barriers of the latter two paths are significantly higher by approximately 25 kJ/mol than that of the former (27.2 and 28.8 vs 5.4 kJ/mol), the major reaction is therefore the formation of P1.  相似文献   

14.
The mechanism of the sulfur extraction reaction between singlet germylene carbene and its derivatives [X2Ge?C: (X = H, F, Cl, CH3)] and thiirane has been investigated with density functional theory, including geometry optimization and vibrational analyses for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by B3LYP/6‐311G(d,p) method. From the potential energy profile, it can be predicted that the reaction pathway of this kind consists two steps: (1) the two reactants firstly form an intermediate (INT) through a barrier‐free exothermic reaction; (2) the INT then isomerizes to a product via a transition state (TS). This kind reaction has similar mechanism, when the germylene carbene and its derivatives [X2Ge?C: (X = H, F, Cl, CH3)] and thiirane get close to each other, the shift of 3p lone electron pair of S in thiirane to the 2p unoccupied orbital of C in X2Ge = C: gives a pp donor–acceptor bond, leading to the formation of INT. As the pp donor–acceptor bond continues to strengthen (that is the C? S bond continues to shorten), the INT generates product (P + C2H4) via TS. It is the substituent electronegativity that mainly affects the extraction reactions. When the substituent electronegativity is greater, the energy barrier is lower, and the reaction rate is greater. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

15.
The mechanism of the cycloaddition reaction between singlet dichloro‐germylene carbene and aldehyde has been investigated with MP2/6‐31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by zero‐point energy and CCSD (T)//MP2/6‐31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The channel (A) consists of four steps: (1) the two reactants (R1, R2) first form an intermediate INT2 through a barrier‐free exothermic reaction of 142.4 kJ/mol; (2) INT2 then isomerizes to a four‐membered ring compound P2 via a transition state TS2 with energy barrier of 8.4 kJ/mol; (3) P2 further reacts with aldehyde (R2) to form an intermediate INT3, which is also a barrier‐free exothermic reaction of 9.2 kJ/mol; (4) INT3 isomerizes to a germanic bis‐heterocyclic product P3 via a transition state TS3 with energy barrier of 4.5 kJ/mol. The process of channel (B) is as follows: (1) the two reactants (R1, R2) first form an intermediate INT4 through a barrier‐free exothermic reaction of 251.5 kJ/mol; (2) INT4 further reacts with aldehyde (R2) to form an intermediate INT5, which is also a barrier‐free exothermic reaction of 173.5 kJ/mol; (3) INT5 then isomerizes to a germanic bis‐heterocyclic product P5 via a transition state TS5 with an energy barrier of 69.4 kJ/mol. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
The mechanism of the oxide extraction reaction between singlet silylene carbene and its derivatives [X2Si = C: (X = H, F, Cl, CH3)] and ethylene oxide has been investigated with density functional theory, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by B3LYP/6‐311G(d,p) method. From the potential energy profile, it can be predicted that the reaction pathway of this kind consists two steps, the first step is the two reactants firstly form an intermediate (INT) through a barrier‐free exothermic reaction; the second step is the INT then generates a product via a transition state (TS). This kind reaction has similar mechanism, when the silylene carbene and its derivatives [X2Si = C: (X = H, F, Cl, CH3)] and ethylene oxide close to each other, the shift of 2p lone electron pair of O in ethylene oxide to the 2p unoccupied orbital of C in X2Si = C: gives a p → p donor–acceptor bond, thereby leading to the formation of INT. As the p → p donor–acceptor bond continues to strengthen (that is, the C? O bond continues to shorten), the INT generates product (P + C2H4) via TS. It is the substituent electronegativity, which mainly affects the extraction reactions. When the substituent electronegativity is greater, the energy barrier is lower, and the reaction rate is greater. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

17.
The reactivity of Ni+ with OCS on both doublet and quartet potential energy surfaces (PES) has been investigated at the B3LYP/6-311+G(d) level. The object of this investigation was the elucidation of the reaction mechanism. The calculated results indicated that both the CS and CO bond activations proceed via an insertion–elimination mechanism. Intersystem crossing between the doublet and quartet surfaces may occur along both the CS and CO bond activation branches. The ground states of NiS+ and NiO+ were found to be quartets, whereas NiCO+ and NiCS+ have doublet ground states. The CS bond activation is energetically much more favorable than the CO bond activation. All theoretical results are in line with early experiments.  相似文献   

18.
The reactivity of Cu+ with OCS on both singlet and triplet potential energy surfaces (PES) has been investigated at the UB3LYP/6-311+G(d) level. The object of this investigation was the elucidation of the reaction mechanism. The calculated results indicated that both the C–S and C–O bond activations proceed via an insertion–elimination mechanism. Intersystem crossing between the singlet and triplet surfaces may occur along both the C–S and C–O bond activation branches. The ground states of CuS+ and CuO+ were found to be triplets, whereas CuCO+ and CuCS+ have singlet ground states. The C–S bond activation is energetically much more favorable than the C–O bond activation. All theoretical results are in line with early experiments.  相似文献   

19.
Mechanisms of the cycloaddition reaction between singlet difluoromethylene carbene and acetone have been investigated with the second‐order Møller–Plesset (MP2)/6‐31G* method, including geometry optimization and vibrational analysis. Energies for the involved stationary points on the potential energy surface (PES) are corrected by zero‐point energy (ZPE) and CCSD(T)/6‐31G* single‐point calculations. From the PES obtained with the CCSD(T)//MP2/6‐31G* method for the cycloaddition reaction between singlet difluoromethylene carbene and acetone, it can be predicted that path B of reactions 2 and 3 should be two competitive leading channels of the cycloaddition reaction between difluoromethylene carbene and acetone. The former consists of two steps: (i) the two reactants first form a four‐membered ring intermediate, INT2, which is a barrier‐free exothermic reaction of 97.8 kJ/mol; (ii) the intermediate INT2 isomerizes to a four‐membered product P2b via a transition state TS2b with an energy barrier of 24.9 kJ/mol, which results from the methyl group transfer. The latter proceeds in three steps: (i) the two reactants first form an intermediate, INT1c, through a barrier‐free exothermic reaction of 199.4 kJ/mol; (ii) the intermediate INT1c further reacts with acetone to form a polycyclic intermediate, INT3, which is also a barrier‐free exothermic reaction of 27.4 kJ/mol; and (iii) INT3 isomerizes to a polycyclic product P3 via a transition state TS3 with an energy barrier of 25.8 kJ/mol. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

20.
The mechanism of the cycloaddition reaction of forming a germanic hetero‐polycyclic compound between singlet germylidene (R1) and acetone (R2) has been investigated with CCSD(T)//MP2/6‐31G* method. From the surface energy profile, it can be predicted that the dominant reaction pathway for this reaction consists of three steps: (1) the two reactants (R1, R2) firstly form a twisted four‐membered ring intermediate (INT2); (2) the intermediate (INT2) reacts further with acetone (R2) to give another intermediate (INT4); (3) intermediate (INT4) isomerizes to a hetero‐polycyclic germanic compound (P4) via a transition state TS4. The presented rule of this reaction: the [2+2] cycloaddition effect between the π orbital of germylidene and the π orbital of π‐bonded compounds leads to the formation of four‐membered ring intermediate (INT2). The 4p unoccupied orbital and the lone‐pair sp electrons of Ge in the four‐membered ring intermediate (INT2) react with the π orbital and the antibonding π* orbital of π‐bonded compounds, respectively, forming the π→p and sp→ π* cyclic donor‐acceptor bonds, resulting in the generation of a stable germanic hetero‐polycyclic compound (P4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号