首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
An elastic-viscoplastic mechanics model is used to investigate asymptotically the mode Ⅲ dynamically propagating crack tip field in elastic-viscoplastic materials. The stress and strain fields at the crack tip possess the same power-law singularity under a linear-hardening condition. The singularity exponent is uniquely determined by the viscosity coefficient of the material. Numerical results indicate that the motion parameter of the crack propagating speed has little effect on the zone structure at the crack tip. The hardening coefficient dominates the structure of the crack-tip field. However, the secondary plastic zone has little influence on the field. The viscosity of the material dominates the strength of stress and strain fields at the crack tip while it does have certain influence on the crack-tip field structure. The dynamic crack-tip field degenerates into the relevant quasi-static solution when the crack moving speed is zero. The corresponding perfectly-plastic solution is recovered from the linear-hardening solution when the hardening coefficient becomes zero.  相似文献   

2.
I型定常扩展裂纹尖端的弹黏塑性场   总被引:1,自引:1,他引:1  
Jia Bin  王振清  李永东 《力学学报》2005,37(4):421-427
考虑材料在扩展裂纹尖端的黏性效应,假设黏性系数与塑性应变率的幂次成反比,对幂硬化材料中平面应变扩展裂纹尖端场进行了弹黏塑性渐近分析,得到了不含间断的连续解,并讨论了I型裂纹数值解的性质随各参数的变化规律. 分析表明应力和应变均具有幂奇异性,并且只有在线性硬化时,尖端场的弹、黏、塑性才可以合理匹配. 对于I型裂纹,裂尖场不含弹性卸载区. 当裂纹扩展速度趋于零时,动态解趋于准静态解,表明准静态解是动态解的特殊形式;如果进一步考虑硬化系数为零的极限情况,便可退化为Hui和Riedel的非线性黏弹性解.  相似文献   

3.
An elastic-viscoplastic constitutive model was adopted to analyze asymptotically the tip-field of moving crack in linear-hardening materials under plane strain condition. Under the assumption that the artificial viscosity coefficient was in inverse proportion to power law of the rate of effective plastic strain, it is obtained that stress and strain both possess power law singularity and the singularity exponent is uniquely determined by the power law exponent of the rate of effective plastic strain. Variations of zoning structure according to each material parameter were discussed by means of numerical computation for the tip-field of mode Ⅱ dynamic propagating crack, which show that the structure of crack tip field is dominated by hardening coefficient rather than viscosity coefficient. The secondary plastic zone can be ignored for weak hardening materials while the secondary plastic zone and the secondary elastic zone both have important influence on crack tip field for strong hardening materials. The dynamic solution approaches to the corresponding quasi-static solution when the crack moving speed goes to zero, and further approaches to the HR (Hui-Riedel) solution when the hardening coefficient is equal to zero.  相似文献   

4.
The viscosity of material is considered at propagating crack-tip. Under the assumption that the artificial viscosity coefficient is in inverse proportion to power law of the plastic strain rate, an elastic-viscoplastic asymptotic analysis is carried out for moving crack-tip fields in power-hardening materials under plane-strain condition. A continuous solution is obtained containing no discontinuities. The variations of numerical solution are discussed for mode I crack according to each parameter. It is shown that stress and strain both possess exponential singularity. The elasticity, plasticity and viscosity of material at crack-tip only can be matched reasonably under linear-hardening condition. And the tip field contains no elastic unloading zone for mode I crack. It approaches the limiting case, crack-tip is under ultra-viscose situation and energy accumulates, crack-tip begins to propagate under different compression situations.  相似文献   

5.
The viscosity of material is considered at propagating crack-tip. Under the assumption that the artificial viscosity coefficient is in inverse proportion to power law of the plastic strain rate, an elastic-viscoplastic asymptotic analysis is carried out for moving crack-tip fields in power-hardening materials under plane-strain condition. A continuous solution is obtained containing no discontinuities. The variations of numerical solution are discussed for mode Ⅰ crack according to each parameter. It is shown that stress and strain both possess exponential singularity. The elasticity, plasticity and viscosity of material at crack-tip only can be matched reasonably under linear-hardening condition. And the tip field contains no elastic unloading zone for mode Ⅰ crack. It approaches the limiting case, crack-tip is under ultra-viscose situation and energy accumulates, crack-tip begins to propagate under different compression situations.  相似文献   

6.
粘弹塑性材料动态裂纹尖端场   总被引:11,自引:1,他引:11  
王振清 《力学学报》1993,25(2):159-168
本文采用一种弹性/粘塑性模型,对扩展裂纹尖端应力应变场进行了渐近分析。文中假定,弹性阶段的粘性效应可以略去,仅在塑性应变中粘性才起作用。对这种模型,文中导出了一种率敏感型的本构关系。并进一步导出了裂纹尖端应力应变场的动力学方程。通过量级分析,给出了尖端场的应力应变奇异性指数。并且讨论了弹性,塑性及粘性三者的匹配条件。对Ⅲ型裂纹进行了具体的分析计算。对各个不同参数的选取进行了详细的分析,讨论了解的性质随各参数的变化规律。  相似文献   

7.
The elastic-viscoplastic model proposed by Bingham was used to analyse the stress and strain surrounding the tip of a propagating crack under antiplane shear. The proper displacement pattern was given ; the asymptotic equations were derived and solved numerically. The analysis and calculation show that for smaller viscosity the crack-tip possesses logarthmic singularity, and for larger viscosity it possesses power-law singularity.In critical case, the two kinds of singularity are consistent with each other. The result revealed the important role of viscosity for crack-tip field.  相似文献   

8.
For a compression-shear mixed mode interface crack, it is difficult to solve the stress and strain fields considering the material viscosity, the crack-tip singularity, the frictional effect, and the mixed loading level. In this paper, a mechanical model of the dynamic propagation interface crack for the compression-shear mixed mode is proposed using an elastic-viscoplastic constitutive model. The governing equations of propagation crack interface at the crack-tip are given. The numerical analysis is performed for the interface crack of the compression-shear mixed mode by introducing a displacement function and some boundary conditions. The distributed regularities of stress field of the interface crack-tip are discussed with several special parameters. The final results show that the viscosity effect and the frictional contact effect on the crack surface and the mixed-load parameter are important factors in studying the mixed mode interface crack- tip fields. These fields are controlled by the viscosity coefficient, the Mach number, and the singularity exponent.  相似文献   

9.
压-剪混合型定常扩展裂纹尖端的弹黏塑性场   总被引:1,自引:2,他引:1  
梁文彦  王振清  周博 《力学学报》2006,38(5):618-625
假定黏性系数与塑性等效应变率的幂次成反比,考虑其黏性和裂纹面摩擦接触效应 建立了压-剪混合型定常扩展裂纹尖端弹黏塑性场的渐近方程,求得了裂纹尖端场不含应力、应变间 断的数值解. 并讨论了压-剪混合型裂纹数值解随各个参数的变化规律,计算结果 和分析表明,压-剪混合型裂纹尖端场是满塑性的,不含有弹性卸载区,黏性效应是研究扩展裂纹尖端场时的一个重要因素. 无论混合裂纹趋近I型还是趋近II型,静水压力随摩擦系数的增加都是增加的,裂纹面摩擦 效应是阻止裂纹扩展速度的因素,且摩擦作用越强,裂纹尖端场的韧性越高.  相似文献   

10.
The asymptotic fields near the tip of a crack steadily propagating in a ductile material under Mode III loading conditions are investigated by adopting an incremental version of the indeterminate theory of couple stress plasticity displaying linear and isotropic strain hardening. The adopted constitutive model is able to account for the microstructure of the material by incorporating two distinct material characteristic lengths. It can also capture the strong size effects arising at small scales, which results from the underlying microstructures. According to the asymptotic crack tip fields for a stationary crack provided by the indeterminate theory of couple stress elasticity, the effects of microstructure mainly consist in a switch in the sign of tractions and displacement and in a substantial increase in the singularity of tractions ahead of the crack-tip, with respect to the classical solution of LEFM and EPFM. The increase in the stress singularity also occurs for small values of the strain hardening coefficient and is essentially due to the skew-symmetric stress field, since the symmetric stress field turns out to be non-singular. Moreover, the obtained results show that the ratio η introduced by Koiter has a limited effect on the strength of the stress singularity. However, it displays a strong influence on the angular distribution of the asymptotic crack tip fields.  相似文献   

11.
A new elastic-viscoplastic mode was proposed to analyze the stress and strain fields surrounding the tip of a propagating mode Ⅰ cracks. A proper displacement pattern was suggested and asymptotic equations were derived, and numerical solutions were illustrated. The analysis and calculation show that the crack-tip field is of logarithmic singularity for smaller viscosity, however no solution exists for large viscosity. By a careful analysis and comparison, it is found that the present results retain all merits of those given by Gao Yu-chen, while removing existing problems.  相似文献   

12.
The asymptotic stress and strain fields near the tip of a crack which propagates dynamically in a rate-sensitive solid are obtained under anti-plane shear and plane strain conditions. The problem is formulated within the context of a small-strain theory for a solid whose mechanical behavior under high strain rates is described by an elastic-viscoplastic constitutive relation. It is shown that, if the stresses are singular at the crack-tip, the viscoplastic relation is equivalent asymptotically to an elastic-non-linear viscous relation. Furthermore, for a certain range of the material parameter which characterizes the rate-sensitivity of the material, the elastic strain-rates near the propagating crack tip are shown to have the same asymptotic radial dependence near the propagating crack-tip as the inelastic strain-rates. This determines the order of the stress singularity uniquely. The governing equations for anti-plane shear and plane strain are then derived. The numerical results for the stress and strain fields are presented for anti-plane shear and plane strain. For the present model, the results suggest that under small-scale yielding conditions, there exists a minimum velocity for stable steady crack propagation. The implication that a terminal velocity for a running crack may exist is also discussed.  相似文献   

13.
A new elastic-viscoplastic mode was proposed to analyze the stress and strain fields surrounding the tip of a propagating mode Ⅰ cracks. A proper displacement pattern was suggested and asymptotic equations were derived, and numerical solutions were illustrated. The analysis and calculation show that the crack-tip field is of logarithmic singularity for smaller viscosity, however no solution exists for large viscosity. By a careful analysis and comparison, it is found that the present results retain all merits of those given by Gao Yu-chen, while removing existing problems.  相似文献   

14.
采用弹性-粘塑性本构模型,对幂硬化粘塑性介质中反平面剪切动态扩展裂纹尖端的应力,应变场进行了渐近分析,给出了反平面剪切动态扩展纹尖端场的渐进方程。分析结果表明,在裂纹法端应力具有(lnR/r)1/n-1的奇异性,应变具有(lnR/Rn/n-1的奇异性。从而提示了幂硬化粘塑材料反平面剪动态扩展裂纹尖端场的渐近行为。  相似文献   

15.
An asymptotic solution is obtained for stress and pore pressure fields near the tip of a crack steadily propagating in an elastic–plastic fluid-saturated porous material displaying linear isotropic hardening. Quasi-static crack growth is considered under plane strain and Mode I loading conditions. In particular, the effective stress is assumed to obey the Drucker–Prager yield condition with associative or non-associative flow-rule and linear isotropic hardening is adopted. Both permeable and impermeable crack faces are considered. As for the problem of crack propagation in poroelastic media, the behavior is asymptotically drained at the crack-tip. Plastic dilatancy is observed to have a strong effect on the distribution and intensity of pore water pressure and to increase its flux towards the crack-tip.  相似文献   

16.
17.
18.
Damaged nonlinear antiplane shear problems with a variety of singularities are studied analytically. A deformation plasticity theory coupled with damage is employed in analysis. The effect of microscopic damage is considered in terms of continuum damage mechanics approach. An exact solution for the general damaged nonlinear singular antiplane shear problem is derived in the stress plane by means of a hodograph transformation, then corresponding higher order asymptotic solutions are obtained by reversing the stress plane solution to the physical plane. As example, traction free sharp notch and crack, rigid sharp wedge and flat inclusion, and mixed boundary sharp notch problems are investigated, respectively. Consequently, higher order fields are obtained, in which analytical expressions of the dominant and second order singularity exponents and angular distribution functions of the near tip fields are derived. Effects of the damage and hardening exponents of materials and the geometric angle of notch/wedge on the near tip quantities are discussed in detail. It is found that damage leads to a weaker dominant singularity of stress, but to little stronger singularities of the dominant and second order terms of strain compared to that for undamaged material. It is also seen that damage has important effect on the angular distribution functions of the near tip stress and strain fields. As special cases, higher order analytical solutions of the crack and rigid flat inclusion tip fields are obtained, respectively, by reducing the notch/wedge tip solutions. Effects of damage and hardening exponents on the dominant and second order terms in the solutions of the crack and inclusion tip fields are discussed.  相似文献   

19.
Viscoplastic field near a propagating crack-tip   总被引:1,自引:0,他引:1  
An elastic-viscoplastic constitutive model is proposed instead of the usual elastoplastic model. It is assumed that when crack-tip is approached the viscosity coefficient lends to zero (=0r). Asymptotic analysis of the dynamic field near a propagating crack-tip is given, and the uniparameter solution is obtained. The numerical result is given for various Mach number and viscosity coefficient. Based on the asymptotic solution, a fracture criterion is proposed and the stability of crack propagation is discussed.  相似文献   

20.
Asymptotic near-tip fields are analyzed for a plane strain Mode I crack propagating dynamically in non-associative elastic–plastic solids of the Drucker–Prager type with an isotropic linear strain hardening response. Eigen solutions are obtained over a range of material parameters and crack speeds, based on the assumption that asymptotic solutions are variable-separable and fully continuous. A limiting speed, beyond which a tendency to slope discontinuity in angular distributions of stresses and velocities is detected, is found to deviate from the associative models. At low strain-hardening rates, the onset of the plastic potential corner zone ahead of the crack-tip imposes another limit to the crack speed. Correspondingly, those limits imply the limits to the degree of non-associativity at a given crack speed. In addition, a tendency to slope discontinuity in the angular radial stress distribution sets another limit on the non-associativity at vanishing hardening rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号