首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dark electrical conductivity of β-metal free phthalocyanine single crystals has been investigated over the temperature range 273–600°K, at a reduced pressure of 10?7 torr. The results obtained are in accordance with the model proposed by Barbe and Westgate[5] for this material, in which the energy gap between the top of the valence band and the bottom of the conduction band is determined to be 2·00 eV. At temperatures below about 410°K, the conduction process is consistent with the presence of an electron trapping level located 0·32 eV below the conduction band edge, with a density of 7×1016 cm?3, and a donor level of density 2×107 cm?3 at the same energy. Above about 410°K, there is evidence to suggest that the conduction process is intrinsic.  相似文献   

2.
The long wavelength tail of the fundamental absorption in NaClO3 and KClO3 crystals has been analysed based on the theory of band to band transitions of Bardeen et al.[8] developed in the case of semi-conducting crystals. Evidence of phonon involvement in the transitions giving an indirect band gap is observed. The energies of the phonons involved in the process are the same for both the crystals, and agree well with combinations of prinicple frequencies of ClO3? ion, their overtones and also lattice phonons. The indirect band gap in these crystals varies with temperature more or less linearly and the rate of variation is ?3·8 × 10?4 eV/K and ?5·0 × 10?4 eV/K for sodium chlorate and potassium chlorate respectively.  相似文献   

3.
The effect of pressure on the optical absorption edge of mixed crystals Cd1-xMnxTe with different manganese concentrations is reported. The observed absorption edge shifts to higher energy with increasing pressure at a rate of α=7?8×10?3 eV/kbar and a second order coefficient of β=-4×10?5 eV/kbar2 for x<0.5, to lower energy with increasing pressure at a rate of α=-5.0 ×10?3 eV/kbar for x?0.5. A phase transition occurs for all the samples studied. The absorption edge of the new phase is outside the wavenumber range of the instrument. The physical origins of different pressure coefficients are discussed in the light of the deformation potentials of energy band states and the hybridization of the Mn2+ 3d levels with the p-like states in the valence band.  相似文献   

4.
Optical absorption in single crystals of tin sulfide has been studied at many temperatures between 100 and 300 °K, in the wavelength range 2·2–0·8 μ. From the interference fringe patterns the absorption coefficient, reflection coefficient and index of refraction as a function of wavelength were determined for two light polarizations (εa and εb). From an analysis of the data, indirect band gaps of 1·142 and 1·095 eV were found for the two directions of polarization. Also it was found that the phonon assisted transitions required the participation of two phonons at different energy thresholds with energies 0·033 or 0·038 eV and 0·082 or 0·113 eV, with reference to the two axis. The temperature dependence of the indirect band gap for each direction of light polarization is linear with a slope ?4·05 × 10?3eV and ?4·37 × 10?3 eV respectively.  相似文献   

5.
A photoelectronic analysis of p-type GaAs:Cr, i.e. measurements of thermally stimulated currents and the dependences of photoconductivity and photo-Hall effect on photon energy, temperature and light intensity, have enabled trap locations and densities as well as properties of neutral chromium acceptors to be determined. Hole traps proved to be located at 0.15 and 0.23 eV above the valence band, and their densities have been estimated to be 1015 cm?3 and 5 × 1016 cm?3 respectively. Their occurrence is related to the presence of copper in the samples investigated. Neutral chromium acceptors are located at 0.77 eV above the valence band and are at a constant distance from the conduction band. Their photoionization cross-section is 3 × 10?17 cm2 while the photoexcited electron escape cross-section is about 10?20 cm2. The potential of a neutral Cr acceptor is of the delta function type with weak coulombic tails. The maximum radius of the Bohr orbit of an electron in the ground state is 4 atomic units.  相似文献   

6.
Iodine doped single crystals of CdS were grown from the vapor phase. High temperature Hall effect measurements for the crystals equilibrated with Cd and S2 vapors at temperatures between 700 and 1000°C gave the free electron concentration as a function of pCd or pS2 and temperature. The results can be explained on the basis of a model in which the CdS is saturated with iodine at low pCd (=high pS2) but unsaturated at high pCd.The solubility of iodine in CdS is given by ct=1·73×1022pS2?1/8 exp (?1·045 eV/kT) cm?3 atm?1/8=4·62×1019pCd1/4 exp (?0·195 eV/kT) cm?3 atm1/4The formation of pairs (ISVCd)′ from IS· and VCd″ is governed by the equilibrium constant KP(I, V)=4 exp (≤1·1 eV/kT)If Cd diffusion occurs primarily by free vacancies, the Cd* tracer self diffusion leads to a vacancy mobility of (1·2±0·5)×10?5 cm2 sec?1 at 900°C, in agreement with results reported by Woodbury [12], but (7±3) times larger than reported by Kumar and Kroger [10].  相似文献   

7.
A first investigation on trapping levels in PbI2, performed by the Thermally Stimulated Current (TSC) technique, is presented. Three hole trapping centers are evidenced at 0.12, 0.29 and 0.59 eV above the valence band, with densities ranging between 8 × 1014 and 5 × 1016 cm?3 and capture cross-sections between 8 × 10?21 and 3 × 10?17 cm2. The center at 0.59 eV is likely responsible for the relatively short trapping time in PbI2, as determined with nuclear techniques. By using a particular method, the behaviour of hole drift mobility along the layers as a function of temperature is determined for the first time. Finally, the presence of a spurious peak, not sensitive to irradiation, is reported and discussed.  相似文献   

8.
Shubnikov-de Haas oscillations in the transverse magnetoresistance of single-crystalline n-type CdSnAs2 have been recorded at temperatures between 2 and 25 K in magnetic fields up to 5T. The electron concentration of the samples ranged from 2 × 1017 to 2 × 1018 cm?3. The angular dependences of the oscillation periods and cyclotron effective masses showed that the conduction band exhibits an energy dependent anisotropy, obeying the Kildal band structure model. For the low-temperature values of the band parameters we found: a band gap Eg = 0.30 eV, a spin-orbit splitting Δ = 0.50 eV, a crystal field splitting parameter δ = ?0.09 eV, and an interband matrix element P = 8.5 × 10?8eV cm. This simple four-level model was found to be not adequate to describe quantitatively the observed electronic effective g-factor for a sample with low electron concentration.  相似文献   

9.
黄启圣  汤定元 《物理学报》1965,21(5):1038-1048
用定态光电导及光磁电的方法测量了p型n型InSb在85—290°K之间的电子及空穴的寿命。在室温附近,所有样品的截流子寿命都趋于同一值,在290°K时为3×10-8秒。从寿命的绝对值及温度依赖关系,以及掺杂对寿命的影响,可以肯定在室温附近起主要作用的复合过程是带间碰撞复合过程。在200°K以下,p型样品中的电子寿命与空穴寿命有很大差别,表明有陷阱作用。用位于价带之上0.05eV的复合中心及位于导带之下0.11eV的电子陷阱能完满地解释200°K以下的寿命与温度的依赖关系。  相似文献   

10.
Using a surface ionisation ion microscope the desorption parameters and the diffusion constant of potassium were measured on stepped W(100) surfaces. The activation energy of ionic desorption as well as the corresponding prefactor do not depend on the step density; the mean adsorption lifetime τ can be expressed as τ=1.6×10?14s exp(2.44 eV/kT).Whereas the surface diffusion of potassium on “flat” W(100) and on W(S)-[9(100)×(110)] was found to be isotropic, on W(S)- [5(100)×(110)] and W(S)-[3(100)×(110)] it occurs preferentially parallel to the step direction. The diffusion constant D for this direction has roughly the same value for all investigated surfaces: D=7.8×10?2 cm2s?1 exp(?0.42 eV/kT). For the direction perpendicular to the steps D⊥ depends on the step density, whereby the activation energy as well as the prefactor increase with increasing step density.  相似文献   

11.
In the case of NaClO3 and KClO3 crystals, analysis of the long wavelength tail of their fundamental absorption revealed the active participation of the internal vibrations of the chlorate ion (Part I). In order to test the validity of the above interpretation the absorption spectra of two more halates with different anions namely sodium bromate and sodium iodate are analysed in a manner similar to that given in Part I. It is found that the principle internal vibrations of bromate and iodate ions are involved in the indirect transitions. The variation of indirect band gap with temperature is found to be ?2·5 × 10?4 eV/K and ?2·9 × 10?4 eV/K for sodium bromate and sodium iodate respectively.  相似文献   

12.
The effect of chlorine impurity on the fundamental reflection spectrum and the electronic band structure of cadmium telluride crystals has been studied. At the impurity concentration N Cl>5.0×1019 cm?3, a peak appears in the reflectance spectra. This peak is due to electron transitions at the X point of the Brillouin zone from the upper split valence band to Cl levels lying 0.05 eV above the Γ minimum of the conduction band. The other features in the reflectance spectra and band structure are explained as being due to the effect of spin-orbit splitting at the X point and to indirect electronic transitions from the Cl levels to the Γ minimum.  相似文献   

13.
Ultrasonic wave velocities have been measured in SnTe single crystals with hole concentrations of 1.0 and 4.5 × 1020/cm3. The shear elastic stiffness constant C44 is sensitive to the hole concentration but 12 (C11 ? C12) is not, a result which is consistent with the valence band pockets being sited at the L points. The non-ellipsoidal, non-parabolic multivalley band model has been used to calculate the hole contribution to the elastic constants. The calculated difference between the shear constant C44 (2.78 × 1010 dyne cm-2) for the two crystals is in agreement with that measured experimentally (2.67 × 1010 dyne cm-2). The shear deformation potential constant Eu for the SnTe valence band is 7.8 eV at 293°K.  相似文献   

14.
The transition probabilities of two Ar(I) lines and one Ar(II) line have been measured in emission on wall-stabilized argon arc plasmas (0·5×105?p, Nm-2?3×105; 10,000?T, K?20,000; 1022?Ne, m-3?5×1023) using the “method of best fit (MBF)”. The results (without line-wing correction) are for Ar(I) at 714·7 nm, Anm=5·66×105 s-1±5%; for Ar(I) at 430·0 nm, Anm=3·40×105 s-1±5%; for Ar(II) at 480·6 nm, Anm=8·82×107 s-1±7%. These values were not influenced by deviations from LTE, which have been observed at electron number densities ne?1023 m-3. The small uncertainties were achieved after careful corrections of different sources of error.  相似文献   

15.
Dielectric relaxation in CaF2 doped with various amounts of Ce3+ (0·01 to 1·0 mol%) was measured. The value of the activation energy for orientation of the dipoles {Ce3+-F? interstitial} was determined to be H = (0·46 ± 0·01) eV. The frequency factor was found to have the value τo = (5 ± 1) × 10?15 sec, giving for the vibrational frequency of the interstitial the value νo = (5 ± 1) × 1013 sec?1.The number of dipoles contributing to the dielectric loss peak was determined to be between 1017 and 8 × 1017 cm?3 for the different doping amounts of Ce3+. Optical absorption measurements showed the existence of large aggregate bands. We could verify that there exists a second-order reaction of aggregation, which is responsible for the non-linearity found between optical absorption at 305 nm and the nominal concentration of Ce3+ in the samples. On the other hand, if we assume that the centers which contribute to optical absorption at 305 nm are those also responsible for the relaxation peak, we find that the number contributing to each process is not the same. We can define an interaction radius R as the minimum separation between two dipoles allowing them to contribute to the relaxation peak. From our experimental data R ? 3·8 × 10?7 cm.  相似文献   

16.
Abstract

A detailed deep level transient spectroscopy (DLTS) study has been carried out on a prominant hole trap at 0.34 eV above the valence band in irradiated p-type silicon. The boron concentration in the float zone and Czochralski-grown samples varied between 1012 and 1016 cm?3, and irradiations with 2.0 MeV electrons have been performed at nominal room temperature to total fluences of 1.0 × 1016 and 1.0 × 1017 e?/cm2. The introduction rate of the trap is strongly boron-dependent, while the oxygen content in the samples does not influence neither the trap production rate nor its observed annealing behaviour. In the light of these observations and other available data on this trap, a boron-carbon pair is here tentatively proposed as the defect identity. A previously unreported hole trap at 0.45 eV above the valence band has also been observed in this work in highly boron-doped material. The isothermal and isochronal annealing characteristics of both traps have been investigated up to 400°C.  相似文献   

17.
Auger electron spectra have been recorded when oxygen is adsorbed on a Ni(111) single crystal surface. For the coverage range θ < 1, an analysis of the plot of the peak to peak height (H) of the oxygen KVV (516 eV) transition versus the total number of molecules cm2? impinging on the surface (molecular beam dosing) shows agreement with the kinetic mechanism proposed by Morgan and King [Surface Sci. 23 (1970) 259] for the adsorption of oxygen on polycrystalline nickel films. In this coverage range, no energy shifts of the nickel or oxygen Auger peaks were recorded.At coverages θ > 1 (standard dosing procedure) shifts in the valence spectra M2, 3VV (61 eV) and L3M2, 3V (782 eV) of ?2.3 eV and ?1.8eV respectively are recorded at 1.4 × 10?2 torr-sec. Up to these coverages no shift of the L3VV transition (849 eV) is observed. A chemical shift of ?2.1 eV is recorded in the L3M2, 3M2, 3 Auger transition (716 eV) at 1.4 × 10?2 torr-sec.In the coverage range θ > 1, shifts in the energy of the oxygen Auger peaks are observed. At 5.8 × 10?3 torr-sec. the KVV (516 eV) and KL1V (495.2 ± 0.3 eV) transitions show shifts of ?1.5 eV and ?(1.0 ±0.3) eV respectively. No shift up to this coverage is recorded in the KL1L1 (480.6 ± 0.3 eV) transition.  相似文献   

18.
Measurements performed on n-GaS by means of the space-charge limited current method indicate the presence of a deep trap for electrons, at 0.57 eV from the conduction band and with a density of about 2.3 × 1013cm?3. Another deeper trap at 0.63 eV and with a density of 6 × 1012cm?3 is probably also present. The results seem to confirm the validity of a new direct method of analysis. Traps are tentatively attributed to compensated sulphur vacancies.  相似文献   

19.
The temperature dependence, injection level dependence, and modulation frequency response of cathodoluminescence have been measured in Te-rich CdTe:In for materials with In concentrations ranging from 3 × 1015cm?3 to 1 × 1018cm?3. In lightly-doped material, the 80 K luminescence shows sharp band-edge emission near 1.57 eV and a broad impurity-defect band near 1.4 eV. As temperature increases, the 1.4 eV band quenches out, leaving only the band-edge emission. In heavily-doped material, the band- edge emission is absent and the 80 K luminescence shows only the 1.4 eV band. As the temperature increases from 80 K to 300 K, the 1.4 eV band does not quench out but rather undergoes a complex evolution into a long tail on the band-edge emission which begins to appear at approximately 140 K. At a temperature of 200 K, where the luminescence of the heavily-doped material consists of a broad but structured band approximately 0.2 eV in width, frequency response measurements indicate that band-to-band transitions contribute to the high-energy part of the broad luminescence while the remainder of the band results from slower transitions. The frequency and temperature dependences suggest that the luminescence involves an impurity level that has merged with a band edge at an In concentration of 1 × 1018cm3. We interpret this behavior as suggesting that the 1.4 eV luminescence in Te-rich CdTe:In results from a partially-forbidden transition between conduction band and a deep acceptor level rather than from an intracenter type of transition.  相似文献   

20.
Absorption spectra at 77° K near the direct (κ = 0) exciton transition are reported for deformed and undeformed single-crystal films of n-type Ge oriented on (111); Elliott's theory is applied. The optical width of the forbidden band for this transition is found as Eg 0 = (0.8821 ±±0.0002) eV, while the exciton binding energy is found as Eex(0) = = (0.0016±0.0003) eV for undeformed Ge at 77 ° K. The mean temperature coefficient of Eg for κ = 0 in the range 77 °–297 ° K is (dEg/ /dT)p =?3.50 · 10?4 eV/deg. The effects of thermoelastic deformation on the exciton spectrum give (dEg/dT)d = (?1.5±0.1) · 10?4 eV/deg. The half-width σ ≈ 5 · 10?4 eV of the exciton peak gives the exciton lifetime as gt ≥ 10?12 sec.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号