首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the results of a selected ion flow tube (SIFT) study of the reactions of H3O+, NO+ and O+2 with some nine carboxylic acids and eight esters. We assume that all the exothermic proton transfer reactions of H3O+ with all the acid and esters molecules occur at the collisional rate, i.e. the rate coefficients, k, are equal to kc; then it is seen that k values for most of the NO+ and O+2 reactions also are equal to or close to kc. The major ionic products of the H3O+ reactions with both the acids and esters are the protonated parent molecules, MH+, but minor channels are also evident, these being the result of H2O elimination from the excited (MH+)1 in some of the acid reactions and an alcohol molecule elimination (CH3OH or C2H5OH) in some of the ester reactions. The NO+ reactions with the acids and esters result in both ion-molecule association producing NO+M in parallel with hydroxide ion (OH) transfer with some of the acids, and parallel methoxide ion (CH3O) and ethoxide ion (C2H5O) transfer as appropriate with some of the esters. The O+2 reactions proceed by dissociative charge transfer with the production of two or more ionic fragments of the parent molecules, the different isomeric forms of both the acid and the ester molecules resulting in different product ions.  相似文献   

2.
A mechanism is discussed which reproduces in simulations the oscillations during the methylene-blue catalyzed reduction of O2 by HS in a continuous-flow, strirred tank reactor (CSTR). It contains 14 reactions and is based on experiments and simulations of simpler reactions including the reduction of MB+ by HS in the absence and presence of O2 and the reactions of H2O2 and O2 with HS. All experiments on component reactions as well as the CSTR oscillations can be simulated by the same set of reactions and rate constants. The major dynamic feature of the mechanism is the competition for MB. by the oxidizing agents O2 and H2O2 and the reducing agents HS and HS.. The species MB. is the radical intermediate between the colored (MB+) and colorless (MBH) forms of methylene blue.  相似文献   

3.
Cross-sections have been measured for the charge neutrilization if ions from benzene in kiloelectron-volt collisions with benezene target molecules. Measured values range from 65 Å2 for the symmetric [C6H6]+? C6H6 resonant reactions to 8 Å2 for [C3H3]+? C6H6 reactions. Cross-sections computed using a simple resonance charge transfer model compare favourably with experimental data for the symmetric reactions. The cross-sections for asymmetric reactions are smaller that those for they symmetric system and magnitudes of the asymmetric cross-sections are correlated with recombination energies of the respective ions.  相似文献   

4.
《Chemical physics》1987,117(2):325-339
Unimolecular and collision-induced dissociation reactions of CH3I2+ have been studied by techniques of ion kinetic energy spectroscopy using a double-focusing mass spectrometer. Both charge-separation reactions (yielding CH+3 + I+) and reactions yielding dication fragments (I2+) were studied. The dissociation reactions are highly non-statistical, proceeding via essentially isolated states. Resolution of the charge-separation reaction into channels corresponding to the 3P2 and (3P1 plus 3P0) states of I+ are reported for the first time. Speculative partial interpretations of the data, in terms of correlation within the C*3v double (extended point) group, are presented.  相似文献   

5.
Criegee intermediates (CIs) are a class of reactive radicals that are thought to play a key role in atmospheric chemistry through reactions with trace species that can lead to aerosol particle formation. Recent work has suggested that water vapor is likely to be the dominant sink for some CIs, although reactions with trace species that are sufficiently rapid can be locally competitive. Herein, we use broadband transient absorption spectroscopy to measure rate constants for the reactions of the simplest CI, CH2OO, with two inorganic acids, HCl and HNO3, both of which are present in polluted urban atmospheres. Both reactions are fast; at 295 K, the reactions of CH2OO with HCl and HNO3 have rate constants of 4.6×10?11 cm3 s?1 and 5.4×10?10 cm3 s?1, respectively. Complementary quantum‐chemical calculations show that these reactions form substituted hydroperoxides with no energy barrier. The results suggest that reactions of CIs with HNO3 in particular are likely to be competitive with those with water vapor in polluted urban areas under conditions of modest relative humidity.  相似文献   

6.
In order to explore the existence of α‐effect in gas‐phase SN2@N reactions, and to compare its similarity and difference with its counterpart in SN2@C reactions, we have carried out a theoretical study on the reactivity of six α‐oxy‐Nus (FO?, ClO?, BrO?, HOO?, HSO?, H2NO?) in the SN2 reactions toward NR2Cl (R = H, Me) and RCl (R = Me, i‐Pr) using the G2(+)M theory. An enhanced reactivity induced by the α‐atom is found in all examined systems. The magnitude of the α‐effect in the reactions of NR2Cl (R = H, Me) is generally smaller than that in the corresponding SN2 reaction, but their variation trend with the identity of α‐atom is very similar. The origin of the α‐effect of the SN2@N reactions is discussed in terms of activation strain analysis and thermodynamic analysis, indicating that the α‐effect in the SN2@N reactions largely arises from transition state stabilization, and the “hyper‐reactivity” of these α‐Nus is also accompanied by an enhanced thermodynamic stability of products from the n(N) → σ*(O?Y) negative hyperconjugation. Meanwhile, it is found that the reactivity of oxy‐Nus in the SN2 reactions toward NMe2Cl is lower than toward i‐PrCl, which is different from previous experiments, that is, the SN2 reactions of NH2Cl is more facile than MeCl. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The Production of NO+- and NO2+- intermediate complexes formed by nitration of aromatic compounds by means of ion-molecule reactions in the gas phase were attempted. The experiments were performed with benzene, pyridine and toluene respectively and with NO+, NO2+ CH3NO2+ and CH2ONO2+ als ‘nitration’ ions. Aromatic NO+-as well as NO2+-complexes were observed with varying reaction cross-sections. The determined lower limit of bonding energy of 16 kcal/mol for to be σ-complexes. This fact was regarded as additional support for the analogy between electrophilic substitution reactions and ion-molecule reactions.  相似文献   

8.
The reactions of cationic vinylplatinum complexes, Pt(R1CCHR2(PEt3)2-(acetone)+ PF6?, with allene and activated acetylenes yield π-allyl and δ-butadienyl products, respectively. Similar reactions of Pd(CH3)X(Diphos) (X = Cl, NO3, solvent, Diphos = 1,2-bis(diphenylphosphino)ethane) with acetylenes are also described. Factors affecting these insertion reactions are discussed.  相似文献   

9.
A combined EPR–LMR spectrometer with a fast-flow system has been used to investigate the kinetics and mechanisms of NF2 reactions with O and N atoms at 298 K. The overall rate constants of these reactions are: k0 = (2.8 ± 0.4) × 10?11 cm3/s and kN = (5.7 ± 0.8) × 10?11 cm3/s. The stoichiometry of the reactions with respect to O, N, NF2, F, and NO has been determined. The statistical theory of bimolecular reactions has been used for interpretation of the results obtained.  相似文献   

10.
The fact that isotopic exchange reactions take place at chemical equilibirum makes this type of reaction useful for kinetic studies. In the case of chelate complexes [M(chel)n] isotopic exchange reactions can be classified as metal exchange reactions. [M(chel)n]+*M⇆[*M(chel)n]+M and ligand exchange reactions [M(chel)n]+*chel⇆[M(chel)n−1 *chel]+chel The literature on type (a) and type (b) reactions of mainly transition metal complexes is reviewed with respect to the kinetic information obtained. The value and the limitations of isotopic exchange studies as a kinetic technique are discussed.  相似文献   

11.
The reactions of the cyclic molecules C6H6 (benzene), c-C3H6 (cyclopropane) and c-C6H12 (cyclohexane) with ArH+ (ArD+), H3+, N2H+, CH5+, HCO+, OCSH+, C2H3+, CS2H+ and H3O+ have been studied at 300 K using a SIFT apparatus. All the reactions except those of C2H3+ proceed via proton transfer and all are fast except the H3O+ and CS2H+ reactions with c-C6H12 which are endothermic and which establish that the proton affinity of c-C6H12 is 160 ± 1 kcal mol−1, which is considerably lower than the published value. In the c-C3H6 and the c-C6H12 reactions multiple products are observed and hence “breakdown curves” for the protonated molecules are constructed and the appearance energies of the various ion products are consistent with available thermochemical data. The reactions of C2H3+ with these cyclic molecules are atypical within this series of reactions in that they appear to proceed largely via hydride ion transfer. The implications of the results of this study to interstellar chemistry are alluded to.  相似文献   

12.
Mechanisms are proposed for the hydroxide ion-initiated reactions of metal carbonyl halides which lead to allyl-transition metal complexes under phase transfer conditions. Evidence is presented for intermediate anionic metallocarboxylic acids in reactions leading to η3-allyl products of molybdenum, iron, ruthenium and manganese, whereas η1 complexes are shown to result from halide displacement reactions in which simple metal carbonyl anions are generated. In some cases phosphorus-containing ligands inhibit the hydroxide-promoted reactions of metal carbonyl halides with allyl bromide; a rationale involving decreased acidity of the carbonyl ligands is presented. Syntheses of η3-C3H5Mn(CO)3P(OCH3)3 and η3-C3H5Mn(CO)2[P(OCH3)3]2 by phase transfer catalysis are also described.  相似文献   

13.
We have carried out a selected ion flow tube (SIFT) study of the reactions of H3O+, NO+, and O2+ ions with several saturated and unsaturated aldehydes. This study is mainly directed toward providing the essential data for a projected SIFT mass spectrometry (SIFTMS) study of the volatile emissions from cooked meats, which always include aldehydes. Thus, it is necessary to know the rate coefficients and the product ions of the reactions of the above-mentioned ions, used as the precursor ions for SIFTMS analyses, with the aldehydes, if proper identification and quantification of the emitted species are to be achieved. The results of this study show that the reactions of H3O+ with the aldehydes, M, result in the protonated molecules MH+ and for the saturated aldehydes also in (M - OH)+ ions resulting from the loss of a H2O molecule from the nascent MH+ ion. The NO+ reactions invariably proceed via the process of hydride ion, H, transfer producing (M - H)+ ions, but parallel minor association product ions NO+ · M are observed for some of the unsaturated aldehyde reactions. The O2+ reactions proceed by way of charge transfer producing nascent M+ ions that partially dissociate producing fragment ions. Because water vapour is invariably present in real samples analysed by SIFTMS, the current experiments were also carried out following the introduction of humid laboratory air into the helium carrier gas of the SIFT. Thus, the reactions of the product ions that form hydrates were also studied as a prelude to future SIFTMS studies of the (humid) emissions from cooked meats.  相似文献   

14.
Transition metals such as Fe in porphyrin complexes are known to bind or react with O2, and such reactions are critical to many biological functions and catalytic oxidation using O2. The transition metals in these reactions often contain valence d electrons, and oxidation of metals is an important step. In recent years, reactions of O2 with d0 transition metal complexes such as Hf(NR2)4 (R = alkyl) have been used to make metal oxide thin films as insulating gate materials in new microelectronic devices. This feature article discusses our recent studies of such reactions and the formation of TiO2 thin films. In contrast to the reactions of many d n complexes where metals are often oxidized, reactions of d0 complexes such as Hf(NMe2)4 and Ta(NMe2)4(SiR3) with O2 usually lead to the oxidation of ligands, forming, e.g., -ONMe2 and -OSiR3 from -NMe2 and -SiR3 ligands, respectively. Mechanistic and theoretical studies of these reactions have revealed pathways in the formation of the metal oxide thin films as microelectronic materials.  相似文献   

15.
Hydrolysis reactions of silylurethanes Me3Si(p-XC6H4)NCOOEt (I) with X = Cl, H or Me in aqueous buffer solutions, with pH values from 1.94 to 10.00 were studied.The catalytic rate constants for the acid and base catalysed reactions and for the “non-catalysed” reaction k(H3O+), k(CH3COO?), k(H2PO4?), k(HPO42?), k(NH3), k(OH?) and k0 were evaluated from the pseudo first-order rate constants kexp determined by UV spectroscopy.The Brönsted coefficients for the base-catalysed reactions were obtained from the catalytic rate constants found and the known constants of dissociation K(HB+).The ρ values of the reactions could be derived from the σ constants given by Jaffé.The kientical results obtained are interpreted mechanistically and are believed to also have model character for other nucleophilic substitution reactions with silicon compounds.  相似文献   

16.
The rate coefficients and ionised product distributions have been determined for reactions of the ions CH+n and C2H+n with H2 and CH4, for n = 0 to 4, in a SIFT apparatus at 300 K. The reactions are fast and multiple products result from the CH4 reactions.  相似文献   

17.
Reactions of tetra-n-butylammonium 2,4-dinitrophenyl hydrogen phosphate, (ArPH)?(R4N)+, in aprotic and protic solvents, in the absence and in the presence of alcohols or water, ROH, are compared with analogous reactions of the salt in the presence of hindered and unhindered amines, e.g. diisopropylethyl amine and quinuclidine. Similar studies are performed with the acid, ArPH2, in the presence of variable amounts of amines. The release of phenol and the fate of the phosphorus compounds are followed by 1H and 31P NMR spectrometry. In the absence of free unhindered amine, reactions of the monoanion are relatively slow, sensitive to steric hindrance in the alcohol, and incapable of producing t-butyl phosphate from t-butanol; reactions of the dianion are relatively fast, insensitive to steric hindrance in the alcohol, and produce t-butyl phosphate. In the presence of free unhindered amine, reactions of the monoanion are relatively fast but still sensitive to steric hindrance in the alcohol, and hence do not produce t-butyl phosphate. The intermediate CH(CH2CH2)3+NP(O)(OH)O? is detected in the presence of quinuclidine. Reactions of the dianion in the presence of unhindered amines are analogous to those observed in the presence of hindered amines. The uncatalyzed and the nucleophilic amine-catalyzed reactions of the monoanion are assumed to proceed via oxyphosphorane, P(5), intermediates. The dianion reactions, which are not susceptible to nucleophilic catalysis, are assumed to proceed via the monomeric metaphosphate ion intermediate, PO3?. Significant effects related to solvent properties are observed in these reactions.  相似文献   

18.
The probable fragmentation channels of hydroxymethyl radical cation were studied through the H‐and H2‐abstraction and C‐O bond breaking reactions including their related isomerization reactions. The energy barriers for hydroxymethyl cation undergoing isomerization reactions are generally higher than those undergoing the concerted 1,2‐elimination reactions to generate CHO+ and H2. The fragmentation reaction to form CHO+ and H2 through the 1,2‐elimination pathways is the major fragmentation channel for hydroxymethyl cation, consistent with the experimental observation. H abstraction from the hydroxyl group of CH2OH+ is more difficult than that from the methylene group. The feasible path to lose H is to generate CHOH2+ through hydrogen transfer reaction as the first step and then to undergo H‐elimination to generate trans‐CHOH+. Among all the reactions found in this study, the OH‐elimination to generate CH2+ has the highest energy barrier. Our calculation results indicate that the major signals contributed from the related species of hydroxymethyl cation found in the mass spectrum should be m/e 29, m/e 30.  相似文献   

19.
The reactions of H2O+, H3O+, D2O+, and D3O+ with neutral H2O and D2O were studied by tandem mass spectrometry. The H2O+ and D2O+ ion reactions exhibited multiple channels, including charge transfer, proton transfer (or hydrogen atom abstraction), and isotopic exchange. The H3O+ and D3O+ ion reactions exhibited only isotope exchange. The variation in the abundances of all ions involved in the reactions was measured over a neutral pressure range from 0 to 2 × 10−5 Torr. A reaction scheme was chosen, which consisted of a sequence of charge transfer, proton transfer, and isotopic exchange reactions. Exact solutions to two groups of simultaneous differential equations were determined; one group started with the reaction of ionized water, and the other group started with the reactions of protonated water. A nonlinear least-squares regression technique was used to determine the rate coefficients of the individual reactions in the schemes from the ion abundance data. Branching ratios and relative rate coefficients were also determined in this manner.A delta chi-squared analysis of the results of the model fitted to the experimental data indicated that the kinetic information about the primary isotopic exchange processes is statistically the most significant. The errors in the derived values of the kinetic information of subsequent channels increased rapidly. Data from previously published selected ion flow tube (SIFT) study were analyzed in the same manner. Rigorous statistical analysis showed that the statistical isotope scrambling model was unable to explain either the SIFT or the tandem mass spectrometry data. This study shows that statistical analysis can be utilized to assess the validity of possible models in explaining experimentally observed kinetic behaviors.  相似文献   

20.
The kinetics of gas phase reactions of the ion C5H5Fe+ with oxygen (Me2CO, Me2O, MeOH, iso-propanol, H2O) and nitrogen (NH3, NH2Me, NHMe2, NMe3) donor ligands have been studied by ion trap mass spectrometry. While in the literature reactions of the ion Fe+, with the same ligands, the principal reaction path involves fragmentation in almost all the reactions of the ion C5H5Fe+, formation of adduct ions is the major reaction path. The reactivity of these two ions is briefly compared in the ion trap conditions. Kinetic data for the ion C5H5Fe+ indicate that the reactions show a large range of efficiency and a linear correlation is found between the log of the reaction rate constants and the ionization energy of ligands with the same donor atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号