首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As for [RuCl2(PPh33], carbonylation of [RuCl2(PR3)3] [PR3 = P(p-tolyl)3, PEtPh2) in N,N 1-dimethylformamide (dmf) gives [Ru(CO)Cl2 (dmf) (PR3)2] (II). For PR3 = PEtPh2, rearrangement of (II) in various solvents gives inseparable mixtures (31P evidence) but for PR3 = P(p-tolyl)3 [Ru2(CO)2Cl4-{P(p-tolyl)3}3]is obtained. Reaction of [Ru(CO)Cl2 (dmf) - {P(p-tolyl)3}2] with [RuCI2{(P(p-tolyl)3}3] (1:1 mol ratio) gives [Ru2 (CO) Cl4 {P (p-tolyl)3}4] whereas reaction of [Ru (CO) Cl2 (dmf) - (PPh32] with (Rul2 {P (p-tolyl)3}3] gives [Ru2(CO)Cl4 (PPh3)2] - {P(p-tolyl)3}2] - Reaction of [RuCl2 {P(p-tolyl)3}3] with CS2 gives the related [Ru2Cl4(CS) {P(p-tolyl)3}4] and [{RuCl2(CS)}P(p-tolyl)3{2}2] whereas [RuCl2(PEtPh2)3] and CS2 produce [RuCl2(S2CPEtPh2) (PEtPh2)2]CS2 and [Ru2Cl4(CS)2(PEtph2)3].  相似文献   

2.
Synthesis and studies on some five-coordinate ruthenium(II) complexes, viz. [Ru(MPh3)(C6H5CHO)2Cl2] and [Ru(MPh3)2(CO)Cl2] (where M = P or As) have been described. Reactions of [Ru(MPh3)(C6H5CHO)2Cl2] with N,N-dimethylformamide, dimethylsulphoxide and pyridine and of [Ru(MPh3)2(CO)Cl2] with pyridine are described.  相似文献   

3.
Reactions of ruthenium(II) complexes [RuHX(CO)(EPh3)2(B)] (X = H or Cl; B = EPh3, pyridine (py) or piperidine (pip); E = P or As) with bidentate Schiff base ligands derived by condensingo- hydroxyacetophenone with aniline,o- orp-methylaniline have been carried out. The products were characterized by analytical, IR, electronic and1H-NMR spectral studies and are formulated as [Ru(X)(CO) (L)(EPh3)(B)] (L = Schiff base anion; X = H or Cl; B = EPh3, py or pip; E = P or As). An octahedral structure has been tentatively proposed for the new complexes. The new complexes were tested for their catalytic activities in the oxidation of benzyl alcohol to benzaldehyde.  相似文献   

4.
Ruthenium(III) complexes of Schiff bases derived from the condensation of salicylaldehyde or o-vanillin with diamines have been prepared and characterised. The complexes are of the type [RuX(EPh3)(L)] [X=Cl or Br; E=P or As; L=bis(salicylaldehyde)tetramethylenediimine, bis(salicylaldehyde)o-phenylenediimine, bis(o-vanillin)ethylenediimine, bis(o-vanillin)propylenediimine, bis(o-vanillin)tetramethylenediimine or bis(o-vanillin)o-phenylenediimine]. The Schiff bases behave as dibasic tetradentate ligands.  相似文献   

5.
The synthesis and characterization of several hexa‐coordinated ruthenium(III) complexes of the type [RuCl(PPh3)2(L)] (L = dibasic tridentate ligand derived by the condensation of salicylaldehyde/o‐vanillin with o‐aminophenol/o‐aminothiophenol) are reported. IR, electronic, EPR spectral data and redox bahaviour of the complexes are discussed. An octahedral geometry has been tentatively proposed for all the complexes. The new complexes were found to be effective catalysts for the oxidation of benzyl alcohol and cyclohexanol to benzaldehyde and cyclohexanone respectively using N‐methylmorpholine‐N‐oxide as a co‐oxidant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The reactions of [RuCl3(AsPh3)3] with ligands containing nitrogen (alkyl and aryl cyanides, pyridine, α-picoline N.N′-bipyridyl, 1,10-phenanthroline), oxygen (ketones, aldehydes, N,N-dimethylformamide, tetrahydrofuran, dimethylsulphoxide and nitroalkanes) and sulphur (CS2 and Me2S) donor atoms have been studied. The reactions of [RuCl3(AsPh3)3] with tetra alkyl and aryl ammonium and arsonium salts have also been explored. The compounds obtained have been characterised by analyses, conductivity measurements, magnetic measurements and IR spectra. The electronic spectra of the complexes are discussed in terms of possible structures. An equilibrium between hexacoordinated and pentacoordinated species is suggested on the basis of electronic spectral studies.  相似文献   

7.
The reactions of [RuCl3(AsPh3)3] with ligands containing nitrogen (ammonia, hydrazines, amine and thiocyanate) and oxygen (carboxylates) and the reactions of β-diketones (acetylacetone, dibenzoylmethane and benzoylacetone) with [RuCl2(PPh3)2]n and [RuCl2(AsPh3)2]2 have been studied. Apart from this, a new Ru(III) complex, [RuBr3(AsPh3)3] has also been synthesized. The compounds obtained have been characterised by analyses, conductivity and magnetic measurements, molecular weight and spectral studies (IR and visible). An equilibrium between hexacoordinated and pentacoordinated species is suggested on the basis of electronic spectral studies.  相似文献   

8.
Electrochemical transformations of antimony(V) complexes containing a tridentate redoxactive ligand, N,N-bis-(2-hydroxy-di-3,5-tert-butylphenyl)amine: R 3Sb(Cat-NH-Cat) (R = (1) Ph; (2) Et), (3) Et2Sb(Cat-N-Cat)) are studied. Electrochemical oxidation of complexes 1, 2 occurs irreversibly leading to formation of unstable radical cations. The next stage is the chemical process resulting in formation of neutral paramagnetic compounds. The Et2Sb(V)(Cat-N-Cat) complex is characterized by two reversible anodic redox processes corresponding to a change of in the ligand redox level. Stable paramagnetic derivatives are formed as a result of electrochemical oxidation of compounds 1, 3; this allows considering these compounds as potential radical scavengers. Interaction of complex 1 with electrogenerated superoxide radical anion led to formation of paramagnetic reaction products.  相似文献   

9.
Four complexes of the general formula Ru(NNN)2+2 (N NN = tridentate N-heterocyclic ligand) were synthesized and studied spectroscopically. All exhibit visible absorption spectra that are charge-transfer-to-ligand in origin, are luminescent in glasses at 77 K, and display emission spectra that possess energies, structures, and decay tines that label them as charge transfer.  相似文献   

10.
Four new methyloxorhenium(V) compounds were synthesized with these tridentate chelating ligands: 2-mercaptoethyl sulfide (abbreviated HSSSH), 2-mercaptoethyl ether (HSOSH), thioldiglycolic acid (HOSOH), and 2-(salicylideneamino)benzoic acid (HONOH). Their reactions with MeReO(3) under suitable conditions led to these products: MeReO(SSS), 1, MeReO(SOS), 2, MeReO(OSO)(PAr(3)), 3, and MeReO(ONO)(PPh(3)), 4. These compounds were characterized spectroscopically and crystallographically. Compounds 1 and 2 have a five-coordinate distorted square pyramidal geometry about rhenium, whereas 3 and 4 are six-coordinate compounds with distorted octahedral structures. The kinetics of oxidation of 2 and 3 in chloroform with pyridine N-oxides follow different patterns. The oxidation of 2 shows first-order dependences on the concentrations of 2 and the ring-substituted pyridine N-oxide. The Hammett analysis of the rate constants gives a remarkably large and negative reaction constant, rho = -4.6. The rate of oxidation of 3 does not depend on the concentration or the identity of the pyridine N-oxide, but it is directly proportional to the concentration of water, both an accidental and then a deliberate cosolvent. The mechanistic differences have been interpreted as reflecting the different steric demands of five- and six-coordinate rhenium compounds.  相似文献   

11.
Summary Mixed-ligand oxovanadium(V) complexes, [VVO(L)-(sal)], containing salicylaldimine ligands of -amino acids H2L [(1);R = Me, i-Pr and CH2Ph] and salicylaldehyde (Hsal) have been synthesized. The coordination sphere of the complexes is of the VO(ONO)(OO) type, where O atoms are phenolic, carboxylic and aldehydic, and N is of the azomethine type. The complexes are diamagnetic and exhibit only one LMCT band at ca. 490 nm. They display quasi-reversible one-electron reduction peaks in a CH2Cl2-MeCN (21v/v) mixture in the 0.07–0.13V versus s.c.e. range. A trend in the redox potential data has been rationalized on the basis of conventional normal substituent effects.  相似文献   

12.
Summary The reaction of previously reported RhI and IrI cationic complexes towards carbon monoxide and triphenylphosphine has been studied. Carbonyl rhodium(I) mixed complexes of the formulae [Rh(CO)L2(PPh3)]ClO4, (L=tetrahydrothiophene(tht), trimethylene sulfide(tms), SMe2, or SEt2), [(CO)(PPh3)Rh{-(L-L)}2Rh(PPh3)(CO)](ClO4)2 (L-L= 2,2,7,7-tetramethyl-3,6-dithiaoctane (tmdto), (MeS)2(CH2)3 (dth), or 1,4-dithiacyclohexane (dt), [Rh(CO)L(PPh3)2]ClO4 (L= tht, tms, SMe2, or SEt2), and carbonyl iridium(I) complexes of the formulae [Ir(CO)2(COD)(PPh3)]ClO4, [Ir(CO)(COD)(PPh3)2]ClO4, [(CO)(COD)(PPh3) Ir{-(L-L)} Ir(PPh3)(COD)(CO)](ClO4)2 (L-L = tmdto or dt), [(CO)2 (PPh3)Ir(-tmdto)Ir(PPh3)(CO)2](ClO4)2, [(CO)2(PPh3) Ir(-dt)2Ir(PPh3)(CO)2](ClO4)2, were prepared by different synthetic methods.  相似文献   

13.
Two new heterobimetallic complexes of the composition [(VO2)23-slsch){Na2(μ-H2O)2(H2O)2}]n (1) and [(VO2)23-npsch){Na2(μ-H2O)2(H2O)2}(DMF)]n (2) were obtained by reaction of the ligand and vanadium pentoxide in a 1:1 molar ratio in methanol in the presence of Na2CO3 (2 equivalents). The complexes obtained were characterized using various spectroscopic studies. The structures of both the complexes were established by single crystal X-ray crystallographic study. We have also explored the catalytic behavior of the complexes in oxidative bromination of phenol red, which is the bio-inspired reaction catalyzed by an enzyme haloperoxidase.  相似文献   

14.
New pyrimidine derivatives (pyr) have been synthesized using palladium-catalyzed Suzuki coupling reaction. These compounds can undergo cyclometalation with iridium trichloride to form bis-cyclometalated iridium complexes, (pyr)2Ir(acac) (acac = acetylacetonate; pyr = cyclometalated pyr). The substituents at the both cyclometalated phenyl ring and pyrimidine ring were found to affect both electrochemical and photophysical properties of the complexes. Computation results on these complexes are consistent with the electrochemical and photophysical data. The complexes are green-emitting with good solution quantum yields at ∼0.30. Light-emitting devices using these complexes as dopants were fabricated, and the device performance at 100 mA/cm2 are moderate: 9 (17 481 cd/m2, 4.8%, 18 cd/A, 5.1 lm/W); 10 (18 704 cd/m2, 4.9%, 18.9 cd/A, 4.7 lm/W); 13 (20 942 cd/m2, 5.4%, 21.0 cd/A, 6.1 lm/W).  相似文献   

15.
A series of new mixed ligand penta-coordinated square pyramidal ruthenium(II) complexes containing benzaldehyde or its substituents and triphenylphosphine or triphenylarsine have been synthesized and characterized. In the electronic spectra, three well-defined peaks in the visible region were observed and assigned to d-d transitions in D(4h) and low spin axially distortion from O(h) symmetry. The spectrochemical parameters of the complexes were calculated and placed the ligands in the middle of the spectrochemical series. The redox properties and stability of the complexes toward oxidation were related to the electron-withdrawing or releasing ability of the substituent in the phenyl ring of the benzaldehyde. The electron-withdrawing substituents stabilized Ru(2+) complexes, while electron-donating groups favored oxidation to Ru(3+). The mechanism and kinetics of the catalytic oxidation of benzyl alcohol by the complex [RuCl(2)(Pph(3))(C(6)H(5)CHO)(2)] in the presence of N-methylmorpholine-N-oxide have also been studied.  相似文献   

16.
Nine Ru(II) complexes containing the conjugated oligothiophene ligands 3,3'-bis(diphenylphosphino)-2,2':5',2'-terthiophene (P(2)T(3)) and 4',3'-bis(diphenylphosphino)-3,3'-dihexyl- 2,2':5',2':5',2':5',2'-pentathiophene (P(2)T(5)) were prepared and characterized. P(2)T(3) and P(2)T(5) bond as tridentate ligands and three of the complexes (1, 2 and 5) form green five-coordinate Ru(II) complexes in solution. Cyclic voltammetry, variable temperature UV-vis spectroscopy and time-resolved transient absorption spectroscopy were used to characterize the electronic properties of the complexes. Increased conjugation in the complexes containing the P(2)T(5) ligand resulted in a lowering of the oxidation potential of the oligothiophene, but electropolymerization was not observed. The electronic spectra were dominated by π-π* transitions. All of the complexes were non-emissive both at room temperature and low temperature, indicating the excited state decays by other, non-radiative pathways. The transient absorption spectrum of complex 7 shows a species with a band at 475 nm and a lifetime of ~100 ns, assigned to a ligand-based triplet state.  相似文献   

17.
New hexa-coordinated Ru(III) complexes of the type [Ru(H2Pzdc)(EPh3)3X2] have been synthesized by reacting 3,5-pyrazole dicarboxylic acid (H3Pzdc) with the appropriate starting complexes [RuX3(EPh3)3] (where X = Cl or Br; E = P or As). The ligand behaves as a bidentate monobasic chelate. All the complexes have been characterized by analytical and spectroscopic (IR, electronic and EPR) data. Single-crystal X-ray analysis of the complex [Ru(H2Pzdc)(PPh3)2Cl2]·C6H6·C2H5OH revealed that the coordination environment around the ruthenium center consists of an NOP2Cl2 octahedron. The planar ligand occupies the equatorial position along with two chlorine atoms, while the triphenylphosphine groups occupy the axial positions. The electrochemical behavior of the new complexes was studied using cyclic voltammetry. The new mononuclear ruthenium complexes are capable of acting as catalysts for the oxidation of alcohols.  相似文献   

18.
To achieve a net-neutral coordination unit in radiopharmaceuticals with a fac-M(CO)3+ core (M = Tc, Re), facially coordinated monoanionic tridentate ligands are needed. New neutral fac-Re(CO)3L complexes were obtained by treating fac-[Re(CO)3(H2O)3]+ with unsymmetrical tridentate NNN donor ligands (LH) based primarily on a diethylenetriamine (dien) moiety with an aromatic group linked to a terminal nitrogen through a sulfonamide. LHs contain 2,4,6-trimethylbenzenesulfonyl (tmbSO2) and 5-(dimethylamino)naphthalene-1-sulfonyl (DNS) groups. X-ray crystallographic and NMR analyses confirm that in both the solid and the solution states all L- in fac-Re(CO)3L complexes are bound in a tridentate fashion with one donor being nitrogen from a deprotonated sulfonamido group. Another fundamental property that is important in radiopharmaceuticals is shape, which in turn depends on ring pucker. For L- = tmbSO2-dien-, tmbSO2-N'-Medien-, and tmbSO2-N,N-Me2dien-, the two chelate rings have a different pucker chirality, as is commonly found for a broad range of metal complexes. However, for fac-Re(CO)3(DNS-dien), both chelate rings have the same pucker chirality because the sulfonamido ring has an unusual pucker for the absolute configuration at Re; a finding that is attributable to intramolecular and intermolecular hydrogen bonds from the sulfonamido oxygens to the NH2 groups. Averaging of tmb NMR signals, even at -90 degrees C for Re(CO)3(tmbSO2-N,N-Me2dien), indicates rapid dynamic motion in the complexes with this group. However, examination of the structures suggests that free rotation about the S-C(tmb) bond is not possible but that concerted coupled rotations about the N-S and the S-C bonds can explain the NMR data.  相似文献   

19.
Carbonato complexes L2PtCO3 (L = PPh3 or AsPh3) react with certain electrophilic olegins, such as 1,1-dicyanoolefins, under mild conditions to liberate CO2. The reaction of L2PtCO3 with tetracyanoethylene at room temperature is solvent dependent, and in alcoholic solvents, in contrast to an earlier report, the dicyano complexes, L2Pt(CN)2, and tricyanoethenolato complexes, L2Pt(CN) [OC(CN)C(CN)2] have been isolated and identified.  相似文献   

20.
Cheng  Wei  Sheng  Ren  Wang  Yan  Liu  Yuting  Tong  Bihai  Chen  Ping  Wang  Song 《Transition Metal Chemistry》2021,46(1):81-89
Transition Metal Chemistry - Four iridium(III) complexes (1–4) with sulfur-containing phenylpyridazine ligands were successfully synthesized and characterized. The structure of complex 3 was...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号