首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chlorides MexMCl5-x, M = Nb, Ta, x = 1, 2, 3 react with carbodiimides RNCNR (R = isopropyl, cyclohexyl, p-tolyl) to give products of the types MCl4[NR-C(Me)=NR], MeMCl3[NR-C(Me)=NR], MCl3[NR-C(Me)=NR]2, Me2MCl2[NR-C(Me)=NR], MeMCl2[NR-C(Me)=NR]2, which cóntain bidentate acetamidine groups arising from insertion of the carbodiimide into the metal-carbon bond. The products have been characterised by elemental analysis IR and proton NMR spectra.  相似文献   

2.
The reactions of MexMCl5?x, x = 1,2,3, M = Nb, Ta with RNCS, R = Me, Ph have been studied, and products of the types MCl4 [NRC(S)Me], MeTaCl3[NRC(S)Me] and NbCl3[NMeC(S)Me]2 containing thioacetamide groups, arising from insertion into the metalcarbon bonds have been characterised.Reactions with MeSCN yield the complexes MeMCl4 · MeSCN and Me2MCl3 · MeSCN; the presence of S- and N-bonded isomers is indicated by the infrared spectra.  相似文献   

3.
Mono- and Binuclear Dinitrosyl Complexes of Molybdenum and Tungsten. Crystal Structures of (PPh3Me)2[WCl4(NO)2], (PPh3Me)2[MoCl3(NO)2]2, and (PPh3Me)2[WCl3(NO)2]2 The complexes (PPh3Me)2[MCl4(NO)2] (M = Mo, W), and (PPh3Me)2[MCl3(NO)2]2, respectively, are prepared by reactions of the polymeric compounds MCl2(NO)2 with triphenylmethylphosphonium chloride in CH2Cl2, forming green crystals. According to the IR spectra the nitrosyl groups are in cis-position in all cases. The tungsten compounds as well as (PPh3Me)2[MoCl3(NO)2]2 were characterized by structure determinations with X-ray methods. (PPh3Me)2[WCl4(NO)2]: space group C2/c, Z = 4. a = 1874, b = 1046, c = 2263 pm, β = 119.99°. Structure determination with 3492 independent reflexions, R = 0.057. The compound consists of PPh3Me ions, and anions [WCl4(NO)2]2? with the nitrosyl groups in cis-position (symmetry C2v). (PPh3Me)2[WCl3(NO)2]2: Space group C2/c, Z = 4. Structure determination with 2947 independent reflexions, R = 0.059. (PPH3Me)2[MoCl3(NO)2]2: Space group P1 , Z = 1. a = 989, b = 1134, c = 1186 pm; α = 63.25°, β = 80.69°, γ = 69.94°. Structure determination with 3326 independent reflexions, R = 0.046. The compounds consist of PPh3Me ions, and centrosymmetric anions [MCl3(NO)2]22?, in which the metal atoms are associated via MCl2M bridges of slightly different lengths. One of the NO groups is in an axial position, the other one in equatorial position (symmetry C2h).  相似文献   

4.
Several new complexes of organotin(IV) moieties with MCln[meso-tetra(4-sulfonatophenyl)porphine], (R2Sn)2MCln[meso-tetra(4-sulfonatophenyl)-porphinate]s and (R3Sn)4MCln [meso-tetra(4-sulfonatophenyl)porphinate]s, [M = Fe(III), Mn(III): n = 1, R = Me, n-Bu; Ph; M = Sn(IV): n = 2, R = Me, n-Bu] have been synthesized and their solid state configuration investigated by infrared (IR) and Mössbauer spectroscopy, and by 1H and 13C NMR in D2O.The electron density on the metal ion coordinated inside the porphyrin ring is not influenced by the organotin(IV) moieties bonded to the oxygen atoms of the side chain sulfonatophenyl groups, as it has been inferred on the basis of Mössbauer spectroscopy and, in particular, from the invariance of the isomer shift of the Fe(III) and Sn(IV) atoms coordinated into the porphyrin square plane of the newly synthesized complexes, with respect to the same atoms in the free ligand.As far as the coordination polyhedra around the peripheral tin atoms are concerned, infrared spectra and experimental Mössbauer data would suggest octahedral and trigonal bipyramidal environments around tin, in polymeric configurations obtained, respectively, in the diorganotin derivatives through chelating or bridging sulfonate groups coordinating in the square plane, and in triorganotin(IV) complexes through bridging sulfonate oxygen atoms in axial positions.The structures of the (Me3Sn)4Sn(IV)Cl2[meso-tetra(4-sulfonatophenyl)porphinate] and of the two model systems, Me3Sn(PS)(HPS) and Me2Sn(PS)2 [HPS = phenylsulfonic acid], have been studied by a two layer ONIOM method, using the hybrid DFT B3LYP functional for the higher layer, including the significant tin environment. This approach allowed us to support the structural hypotheses inferred by the IR and Mössbauer spectroscopy analysis and to obtain detailed geometrical information of the tin environment in the compounds investigated.1H and 13C NMR data suggested retention of the geometry around the tin(IV) atom in D2O solution.  相似文献   

5.
EPR studies have been carried out on a series of copper(IIcomplexes with the general formula CuL(NCS)xY2-x[L = N,N,N',N″,N″-pentamethyldiethylenetriamine (Me5den); x = 1 or 2; and Y = ClO4, NO3 or B?4], dissolved in different solvents. These studies have revealed that the symmetry around copper(II) in [Cu(Me5den)(NCS)2] and [Cu(Me5,den)-NCS]NO3 is not trigonal-bipyramidal as predicted by IR, conductivity and optical data. The 4s contribution to the ground state is found to influence the isotropic contact term and bond parameters. The hyperfine line-widths observed for the copper(II) ion in solutions of these complexes dissolved in pyridine at room temperature are explained using the theory of Wilson and Kivelson. The isotropic spin—rotational relaxation contribution to the residual line-width is found to be smaller for all the complexes when they are dissolved in pyridine.  相似文献   

6.
The reaction of (OC)4Re[μ-E-HC? C(CO2Me)CS2]Re(CO)4, 1 with EtNH2 yielded two new complexes: Re(CO)4[C(H)? C(CO2Me)C(NHEt)? S], 2 , (52%) and Re(CO)3(NH2Et)[C(H)? C(CO2Me)C(NHEt)=S], 3a (24%) by competitive attack of the EtNH2 at the dithiocarboxylate grouping and at the hydrogen substituted olefinic carbon atom in 1 . In both cases there is a loss of one of the rhenium groupings. The reaction of the sulfurized and oxygenated derivatives of 1, (OC)4Re[EC(H)C(CO2Me)CS2]Re(CO)4, 4a (E=S), 4b (E=O) with EtNH2 yielded Re(CO)4[C(H)=C(CO2Me)C(NHEt)=S], 5a , the parent carbonyl of 3a , by exclusive attack of the amine at the hydrogen substituted olefinic carbon atom. The reaction of (OC)4Re[μ-SC(S)C(CO2Me)C(H)S]Re(CO)4, 6a (an isomer of 4a ) with EtNH2 produced a similar result. The reaction of 4a with Et2NH yielded Re(CO)4[μ-S2C=C(CO2Me)C=NEt2], 5b an N-ethyl substituted derivative of 5a . These results indicate that the addition of certain heteroatoms can have a directing effect upon the reactivity of these compounds with amines. Compounds 2 and 5a were characterized by single crystal x-ray diffraction analyses. Crystal Data: For 2 : space group = P1, a = 10.782(1) Å, b = 14.721(2) Å, c = 9.940(2) Å, a = 91.57(1)°, β = 93.61(1)°, γ = 70.774(9)°, Z = 4, 4516 reflections, R = 0.047 and for 5a : space group = P21/n, a = 11.389(2) Å, b = 9.660(2) Å, c = 14.756(3) Å, β = 103.36(2)°, Z = 4, 1601 reflections, R = 0.022.  相似文献   

7.
The reactions of Me2MCl2 (M = Si, Ge, Sn), Si2Me4Cl2, Si2Me2Cl3, Si2Me2Cl4 and CH2(SiCl2Me)2, and suitable mixtures thereof, with H2S / NEt3 and Li2E (E = Se, Te) have been investigated and lead to a variety of new group 14 chalcogenide systems.  相似文献   

8.
Diacetone Alcohol as Complex Ligand. Crystal Structures of [MnBr2{O=C(Me)CH2–C(Me)2OH}2] and [M{O=C(Me)CH2–C(Me)2OH}2][MCl4] with M = Fe, Co, and Zn The metal halides MnBr2 and MCl2 (M = Fe, Co, Zn) react with diacetone alcohol (4-hydroxy-4-methyl-2-pentanon) forming the title compounds, which are characterized by IR spectroscopy and crystal structure analyses. [MnBr2{O=C(Me)CH2–C(Me2)OH}2] ( 1 ): Space group C2/c, Z = 4, lattice dimensions at 293 K: a = 1189.2(4), b = 1317.2(3), c = 1200.0(3) pm, β = 102.25(3)°, R1 = 0.0256. In 1 the manganese atom is coordinated in a distorted octahedral fashion by the two cis bromine atoms and by the four oxygen atoms of the two diacetone alcohol chelating molecules. The distances Mn–[OH] (223.8 pm) and Mn–[O=C] (222.1 pm) are only slightly different. [M{O=C(Me)CH2–C(Me)2OH}2][MCl4] [M = Fe ( 2 ), Co ( 3 ), Zn ( 4 )]: 2 and 3 crystallize isotypically with each other in the space group Pc, Z = 4. Lattice dimensions for 2 at 293 K: a = 865.8(3), b = 926.3(2), c = 1401.5(1) pm, β = 104.19(2)°, R1 = 0.0421. Lattice dimensions for 3 at 293 K: a = 872.3(1), b = 925.7(1), c = 1394.2(3) pm, β = 104.79(2)°, R1 = 0.0481. As in 1 , the metal atoms of the [M{O=C(Me)CH2–C(Me)2OH}2]2+ ions in 2 and 3 are chelated in a distorted octahedral fashion by two diacetone alcohol molecules and associated cis via two μ-Cl atoms of the [MCl4]2– anions to form strands. [Zn{O=C(Me)CH2–C(Me)2OH}2][ZnCl4] ( 4 ): Space group C2/c, Z = 4. Lattice dimensions at 213 K: a = 1582.27(13), b = 1356.15(13), c = 941.93(7) pm, β = 107.283(10)°, R1 = 0.0328. The zinc atom of the dication in 4 is associated in a distorted octahedral fashion by the two diacetone alcohol chelating molecules in the equatorial positions and trans by two μ-Cl atoms of the [ZnCl4]2– ions to form strands.  相似文献   

9.
MCl5 (M = Nb, Ta) reacts with 2 equivalents of Me3SiNHCMe3 to give [M(NCMe3)Cl3(NH2CMe3)] from which [M(NCMe3)Cl3(PMe3)2] is obtained on addition of PMe3. One equivalent of Me3SiNHCMe3 reacts with MCl5 in the presence of 3 equivalents of PMe3 to give [M(NCMe3)Cl3(PMe3)2] and PMe3HCl. MCl5 reacts with excess RNH2 (R = CMe3, CHMe2, CH2Me) to give [M(NR)(NHR)Cl2(NH2R)] and 3 equivalents of RNH3Cl. One equivalent of alcohol replaces the amido ligand in [M(NCMe3)(NHCMe3)Cl2(NH2CMe3)] to give [M(NCMe3)(OR)Cl2(NH2CMe3)]2 (M = Nb, R = OCMe3; M = Ta, R = OEt). The structure of [Ta(NCMe3)(μ-OEt)Cl2(NH2CMe3)]2 was determined by single-crystal X-ray diffraction methods. Crystals are triclinic, space group P1 with a = 9.900(5), b = 10. 161(17), c = 9.017(6) Å and α = 103.91(8), β = 97.77(4), γ = 64.40(7)°. The structure was solved by Patterson and Fourier methods and refined to an R value of 0.062 for 1319 observed data. The TaNimido and TaNamino bond lengths are 1.70(2) Å and 2.28(2) Å, respectively; the bridging TaO bond lengths are 2.01(2) Å and 2.32(2) Å, the longer one lying trans to the imido function.  相似文献   

10.
The reactions of the organometallic 1,4-diazabutadienes, RN=C(R′)C(Me)=NR″ [R = R″ = p-C6H4OMe, R′ = trans-PdCl(PPh3)2 (DAB); R = p-C6H4OMe, R″ = Me, R′ = trans-PdCl(PPh3)2 (DABI; R = R″ = p-C6H4OMe, R′ = Pd(dmtc)-(PPh3), dmtc = dimethyldithiocarbamate (DABII); R = R″ = p-C6H4OMe, R′ = PdCl(diphos), diphos = 1,2-bis(diphenylphosphino)ethane (DABIII)] with [RhCl(COD)]2 (COD = 1,5-cyclooctadiene, Pd/Rh ratio = 12) depend on the nature of the ancillary ligands at the Pd atom in group R′. In the reactions with DAB and DABI transfer of one PPh3 ligand from Pd to Rh occurs yielding [RhCl(COD)(PPh3)] and the new binuclear complexes [Rh(COD) {RN=C(R?)-C(Me)=NR″}], in which the diazabutadiene moiety acts as a chelating bidentate ligand. Exchange of ligands between the two different metallic centers also occurs in the reaction with DABII. In this case, the migration of the bidentate dmtc anion yields [Rh(COD)Pdmtc] and [Rh(COD) {RN=C(R?)C(Me)=NR″}]. In contrast, the reaction with DABIII leads to the ionic product [Rh(COD)- (DABIII)][RhCl2(COD)], with no transfer of ligands. The cationic complex [Rh(COD)(DABIII)]+ can be isolated as the perchlorate salt from the same reaction (Pd/Rh ratio = 1/1) in the presence of an excess of NaClO4. In all the binuclear complexes the coordinated 1,5-cyclooctadiene can be readily displaced by carbon monoxide to give the corresponding dicarbonyl derivatives. The reaction of [RhCl(CO)2]2 with DAB and/or DABI yields trinuclear complexes of the type [RhCl(CO)2]2(DAB), in which the diazabutadiene group acts as a bridging bidentate ligand. Some reactions of the organic diazabutadiene RN=C(Me)C(Me)=NR (R = p-C6H4OMe) are also reported for comparison.  相似文献   

11.
The interaction of phenylimidotrichloro bis(trimethylphosphine) with dimethylmagnesium gives the trimethyl compound, Re(NPh)Me3(PMe3)2. Exchange reactions between the trichloro and trimethyl compounds are studied by 1H nuclear magnetic resonance and the intermediates Re(NPh)Me2Cl(PMe3)2 and Re(NPh)MeCl2(PMe3)2 isolated.The trimethyl reacts with fluoroboric acid to give a phenylamido complex [Re(NHPh)Me2F(PMe3)2]BF4, with acetic acid to give Re(NPh)Me(CO2Me3)2, and with trityltetrafluoroborate to give [Re(NPh)Me2(PMe3)2]BF4.The interaction of Re(NPh)Cl3(PMe3)2 with excess of bis(trimethylsilylmethyl)magnesium and of trimethyl-phosphine in tetrahydrofuran gives an unusual tri-rhenium compound, (Me3SiCH2)3(O)Re-μ-O-Re(PMe3)4Re(O)2(CH2SiMe3) whose structure as a thf solvate, has been determined by X-ray crystallography. Crystals of the latter are monoclinic, space group P21/n with a = 15.512(3), b = 15.392(2), c = 21.506(4) Å, β = 100.19(2)°, Z = 4. The structure has been refined to an R of 0.07 for 5028 observed diffractometer data. The molecule is tri-nuclear with the central rhenium carrying four PMe3 groups being bound to the second rhenium by a short ReRe bond and to the third by an asymmetric oxygen bridge. The end rhenium bound to the bridge oxygen carries two CH2SiMe3 groups and an oxygen atom, while the other has one CH2SiMe3 group and two oxygen atoms.  相似文献   

12.
Structure, thermal elongation coefficient, and conductivity of Y1 ? x Ca x Cr1 ? y Me y O3 (Me = Mg, Cu) in air are studied at 100–1000°C. Electrochemical activity of electrodes made of most conducting compositions Y1 ? x Ca x Cr1 ? y Me y O3 (Me = Mg, Cu), contacting solid electrolyte 0.9ZrO2 + 0.1Y2O3, is studied over a wide range of polarizations, in air, at 700–900°C.  相似文献   

13.
A series of N-[chloro(diorganyl)silyl]anilines RR′Si(NR″Ph)Cl (R, R′ = Me, Ph, CH2=CH, ClCH2, Cl(CH2)3; R″ = H, Me) was prepared via the reaction of diorganyldichlorosilanes with aniline or N-ethylaniline in the presence of triethylamine.  相似文献   

14.
The Reaction Behaviour of Lithiated Aminosilanes RR′Si(H)N(Li)SiMe3 The bis(trimethylsilyl)aminosubstituted silances RR′Si(H)N(SiMe3)2 11 – 16 (R,R′ = Me, Me3SiNH, (Me3Si)2N) are obtained by the reaction of the lithium silylamides RR′Si(H)N(Li)SiMe3 1 – 10 (R,R′ = Me3SiNLi, Me, Me3SiNH, (M3Si)2N) with chlorotrimethylsilane in the polar solvent tetrahydrofurane (THF). In the reaction of the lithium silylamides [(Me3Si)2N]2(Me3SiNLi)SiH 10 with chlorotrimethylsilane in THF the rearranged product 1,1,3-tris[bis(trimethylsilyl)amino]-3-methyl-1,3-disila-butane [(Me3Si)2N]2Si(H)CH2SiMe2N(SiMe3)2 17 is formed. The reaction of the lithium silyamides RR′ Si(H)N(Li)SiMe3 1 – 3 (1: R = R′ = Me; 2: R = Me, R′ = Me3SiNH; 3: R = Me, R′ = Me3SiNLi) with chlorotrimethylsilane in the nonpolar solvent n-hexane gives the cyclodisilazanes [RR′ Si? NSiMe3]2 18 – 22 (R = Me, Me3SiNH, (Me3Si)2N; R′ = Me, Me3SiNH, (Me3Si)2N, N(SiMe3)Si · Me(NHSiMe3)2) and trimethylsilane. The lithium silylamides 4 , 5 , 6 , 9 , 10 (4: R = R′ = Me3SiNH; 5: R = Me3SiNH, R′ = Me3SiNLi; 6: R = R′ = Me3SiNLi; 9: R = (Me3Si)2N, R ′ = Me3SiNLi; 10: R = R′ = (Me3Si)2N) shows with chlorotrimethylsilane in n-hexane no reaction. The crystal structure of 17 and 21 are reported.  相似文献   

15.
Carbodiimides RN=C=NR (R = i-Pr, c-C6H11, Ph) react with trifluoromethanesulfonic acid with successive formation of O-triflyl isoureas RNHC(OTf)=NR, the isomeric N-triflyl ureas RN(Tf)C(O)NHR, and symmetrically substituted ureas RNHC(O)NHR. Carbodiimide Me3SiN=C=NSiMe3 in the reaction with TfOH undergoes desilylation to afford ester CF3SO2OSiMe3 and unsubstituted carbodiimide (cyanamide), which gives the products of di- and trimerization and urea.  相似文献   

16.
Four dithiooxalato (Dto) bridged one-dimensional Ni(ll) and Ni(ll)Cu(ll) complexes (Me6[14]dieneN4)Ni2(Dto)2) (1), (Me6[14]dieneN4)CuNi(Dto)2 (2), (Me6[14]aneN4)Ni2(Dto)2 (3), and (Me6[14]aneN4)CuNi(Dto)2 (4), were synthesized. These complexes have been characterized by elemental analysis, IR, UV and ESR spectra. The crystal structure of complex3 was determined. It crystallizes in the monoclinic system, space group C2/c with a = 2. 2425(4) nm,b = 1.0088(2) nm,c= 1.4665(3) nm, β= 125.32(3)δ Z = 4;R = 0.076, Rw = 0.079. In the complex, Ni(1) coordinates four sulphur atoms of two Dto ligands in plane square environment. Ni(2) lies in the center of macrocyclic ligand. For Dto ligand, two sulphur atoms coordinate Ni(1), and O(1) coordinates Ni(2) and forms weak coordination bond. O(2) is linked to N(2) of macrocyclic ligand through hydrogen bond.  相似文献   

17.
The reduction of Cp2MCl2 (M = Ti, Zr) with magnesium in THF in the presence of PMe3 affords the complexes Cp2M(PMe3)2 in high yields. These compounds lose one or both PMe3 ligands under very mild conditions. Cp2Ti(PMe3)2 reacts readily with CH3I, CH3C(O)Cl, PhSSPh, Me2PCH2CH2PMe2, CO, RCN (R = Me, t-Bu) or (RN)2S (R = t-Bu, Me3Si) to give the corresponding titanocene products. The structure of Cp2Zr(PMe3)2 has been determined by X-ray diffraction; the structural parameters are similar to those of the titanium analog Cp2Ti(PMe3)2 except that the Zr-P and Zr-C distances are longer.  相似文献   

18.
The novel sixteen-electron complex [Ir(Oq)(COD)] (Oq = 8-oxyquinolate; COD = 1,5-cyclooctadiene) adds monodentate phosphines, phosphites or activated olefins irreversibly to give pentacoordinate iridium(I) complexes of the type [Ir(Oq)(COD)L] (L = PPh3, P(OPh)3, maleic anhydride or tetracyano-ethylene). Reaction of [Ir(Oq)(COD)] with some diphosphines leads to substitution products of the general formula [Ir(Oq)(diphos)] (diphos = 1,2-bis(diphenylphosphino)ethane or cis-1,2-bis(diphenylphosphino)ethylene). Carbon monoxide displaces the COD group from the complexes giving either [Ir(Oq)(CO)2] or [Ir(Oq)(CO)L], and the latter undergo oxidative addition reactions with SnCl4, Me3SiCl, Me3SnCl, MeI, allylbromide, PhCOCl, MeCOCl, Cl2, Br2, TlCl3 and HCl leading to novel iridium(III) complexes.  相似文献   

19.
Composites {Me2(WO4)3 ? xWO3} (Me = Sc, In) (x = 0.5–99%) are synthesized and characterized by XRD and electron microscopy methods and also by the density and specific surface measurements. Temperature dependences of the total conductivity of composites are measured. The contributions of σtot and σel are assessed by the $\sigma (a_{O_2 } )$ and EMF methods. The concentration dependences of conductivity and activation energy are plotted based on the σtot and σion data. It is shown that (a) in the interval x = 0–30 vol % WO3 (0–70 mol %), the conductivity is independent of composition and the ionic component prevails; (b) in the interval x = 60–94.5 vol % (90–99 mol %), the electron conductivity prevails and increases with the increase in x; (c) in the x interval of 30–60 vol % WO3 (70–90 mol %), the conductivity is mixed, i.e., electron(n-type)-ionic; the latter region represents the transition interval from ionic to electron conductivity as x increases. These data are compared with the results obtained earlier for MeWO4-WO3 composites (Me = Ca, Sr, Ba). As regards the structural topology, the {Me2(WO4)3 ? xWO3} composites pertain to the randomly distributed type. It is shown that in contrast to {MeIIWO4 · xWO3} composites, the composites under study do not form the nonautonomous interface phase with the high ionic conductivity. The possible reasons for the observed differences in the topology and the conduction type of composites based on MeWO4 and Me2(WO4)3 are analyzed.  相似文献   

20.
Bis(dialkylamino)carbenium salts {[(Me2N)2CCl]+}2MCl4 2− (M=Ni, Pd) and {[Me2NC(X)NR2]+}2PtCl6 2− (R=Me, All; X=H, Cl, Me) are efficient catalysts for hydrosilylation of allyl phenyl ether, triallylamine, allyl chloride, allylamine, and 1-octene with various hydrosilanes. The catalytic activity is dependent on the salt composition and the nature of the metal M, the saturated compound, and the hydrosilane used. The catalysts used are usually insoluble in the reaction mixture, active, and stable. In some cases, carbenium salts are more selective than Speier's catalyst. Novel catalysts, silica-immobilized dialkylaminocarbenium salts, have been prepared. The kinetics of the reaction have been considered. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 5, pp. 1041–1044, May, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号