首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reductive and the oxidative electron-transfer photochemical reaction system of light-irradiated the mix solutions of Ru(bpy)3 2+ with [Fe(CN)6]4–, [Fe(CN)6]3–, [Fe(CN)5NO]2– and PB (Prussian Blue) have been studied. The double complexes which isolated from the precipitates of the photochemical reaction have been identified by means of Mössbauer spectroscopy. In order to clarify the chemical states of these isolated double complexes, we have (prepared and) studied Mössbauer spectra of the double complexes such as [Ru(bpy)3]3[Fe(CN)6]2.14H2O, [Ru(bpy)3]2[Fe(CN)6].10H2O, [Ru(bpy)3][Fe(CN)5NO].4H2O, and [Ru(bpy)3][PB]2.xH2O.  相似文献   

2.
The preparation and electrical conduction properties of the isostructural one-dimensional conductors Ni0.84[Pt(C2O4)2]·6H2O(Ni-OP) and Mn0.81[Pt(C2O4)2]·6H2O(Mn-OP) are described. Ni-OP exhibits a similar tem dependence of conductivity to the isostructural compounds Co0.83[Pt(C2O4)2]·6H2O(Co-OP) and Zn0.81[Pt(C2O4)2]·6H2O whereas the behaviour of Mn-OP is rather like that of K2[Pt(CN)4]Br0.3·3H2O. These differences are discussed in terms of the variation from compound to compound of the critical temperature for the formation of the “non-Peierls” superstructure (Tc) and the temperature at which the CDW/PD on adjacent conducting chains undergo three-dimensional ordering (T3D). The variation of thermopower with temperature for Co-OP and Mg0.82[Pt(C2O4)2]·6H2O is reported and related to the conduction properties and phase changes which have been observed for these compounds. For the isostructural series M0.8[Pt(C2O4)2]·6H2O (M = Mg, Mn, Co, Ni or Zn) the variation of (T3D) from compound to compound is related to differences in the polarizing power of the cations.  相似文献   

3.
In order for the development of cleaning technology of extreme ultra violet lithography photomask, the behavior of Ru surfaces after treatment with ozonated deionized water (DIO3) solution was studied using Ru and ruthenium oxide particles and 2 nm-thick Ru capping layers. No significant changes in crystalline structures or chemical states of the Ru surfaces, nor any similarities with the structures or states of ruthenium oxide, were observed after DIO3 treatment. Oxidation of ruthenium to form RuO2 or RuO3 was not observed. Adsorption of H2O molecules on the Ru layer increased the surface roughness, but the desorption of H2O molecules recovered it. Local chemisorption of H2O molecules on the Ru surface may be the reason why rougher Ru surfaces were observed after DIO3 cleaning.  相似文献   

4.
Variable temperature (300-40 K) 4-probe d.c. conduction studies on Cs2[Pt(CN)4](FHF)0.39 and Rb2[Pt(CN)4](FHF)0.40 are described. In these salts T3D occurs at a lower temperature than in K2[Pt(CN)4]Br0.3·3H2O and this is attributed to the absence of an inter-chain network of hydrogen bonded water molecules in the bifluorides.  相似文献   

5.
In the case of a hypothetical severe accident in a nuclear power plant, interactions of gaseous RuO4 with reactor containment building surfaces (stainless steel and epoxy paint) could possibly lead to a black Ru-containing deposit on these surfaces. Some scenarios include the possibility of formation of highly radiotoxic RuO4(g) by the interactions of these deposits with the oxidizing medium induced by air radiolysis, in the reactor containment building, and consequently dispersion of this species. Therefore, the accurate determination of the chemical nature of ruthenium in the deposits is of the high importance for safety studies. An experiment was designed to model the interactions of RuO4(g) with samples of stainless steel and of steel covered with epoxy paint. Then, these deposits have been carefully characterised by scanning electron microscopy (SEM/EDS), electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS). The analysis by XPS of Ru deposits formed by interaction of RuO4(g), revealed that the ruthenium is likely to be in the IV oxidation state, as the shapes of the Ru 3d core levels are very similar with those observed on the RuO2·xH2O reference powder sample. The analysis of O 1s peaks indicates a large component attributed to the hydroxyl functional groups. From these results, it was concluded that Ru was present on the surface of the deposits as an oxyhydroxide of Ru(IV). It has also to be pointed out that the presence of “pure” RuO2, or of a thin layer of RuO3 or Ru2O5, coming from the decomposition of RuO4 on the surface of samples of stainless steel and epoxy paint, could be ruled out. These findings will be used for further investigations of the possible revolatilisation phenomena induced by ozone.  相似文献   

6.
Mesoporous RuO2 films were electrochemically fabricated on ITO-coated glass substrate from aqueous ruthenium chloride (RuCl3·nH2O) solution. To achieve highly stable mesoporous structure, an aqueous mixture of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) was used as a templating agent.The mesoporous structure was confirmed by small angle X-ray diffraction (SAXRD) and transmission electron microscopy (TEM). The addition of small amount (10wt%) of CTAB significantly improved the stability of porous structure. The crystallinity of synthesized RuO2 thin film was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Specific capacitance of the synthesized films was evaluated by measuring cyclic voltammetry (CV) and charge-discharge curves in 0.5 M H2SO4. Compared with non-porous electrode, mesoporous RuO2 showed higher supercapacitor performance.  相似文献   

7.
The electrochemical behavior of compacts of micro-and nanodisperse diamond powders were studied by using model redox K3[Fe(CN)6]-K4[Fe(CN)6] and Ce(SO4)2-Ce2(SO4)3 systems in aqueous electrolytes. The current-voltage curves for compacts of microdisperse diamonds and the kinetics of reactions on these compacts in a solution of the [Fe(CN)6]3-/4- system are similar to those obtained by using a metal electrode. For nanodisperse diamonds, the same reactions are essentially irreversible.  相似文献   

8.
The use of N,N′-ethylenebis(salycylideneiminato) (salen) complexes of MnIII in assembling high-spin metal-cyanide coordination clusters with significant magnetic anisotropy is demonstrated. The reaction of [Mn(salen)(H2O)2]+with [Cr(CN)6]3− in aqueous solution generates {Cr[CNMn(salen)(H2O)]6}[Cr(CN)6]·6H2O (1), a previously reported compound featuring a heptanuclear cluster with a distorted octahedral geometry. A fit to the variable-temperature magnetic susceptibility data for 1 revealed the presence of weak antiferromagnetic coupling of within the cluster, giving rise to an S=21/2 ground state. In addition, variable-field magnetization data collected at low temperatures revealed the presence of magnetic anisotropy in the ground state, with the best fit yielding zero-field splitting parameters of D=+0.19 cm−1 and A reaction intended to produce a direct analogue of 1 by employing [Fe(CN)6]3− in place of [Cr(CN)6]3− instead gave an unusually complex compound of formula {Fe(CN)4[CNMn(salen)(MeOH)]2}{[Mn(salen)(H2O)]2}[Mn(salen)(H2O)(MeOH)]2[Fe(CN)6]·4H2O (2). The crystal structure and magnetic properties of this compound are reported.  相似文献   

9.
The positions of the K-absorption edges of iron are recorded for five crystals: Fe0.885O, Fe0.905O, Fe3O4, Fe2O3 and Fe metal, and for two amorphous solids: oxide glass ([Na2O · 2SiO2]0.8 [Fe2O3]0.2) and metallic glass (Fe36Cr32Ni14P12B6). It is observed that there is a correlation between the positive X-ray K- absorption edge chemical shift and the effective coordination charge. The ionic state of iron in oxide glass is identical to the ferric iron in Fe2O3 as shown by the same positions of iron K-absorption edges in this glass and Fe2O3. The K-edge of the metallic glass appears 6.5 eV higher than that of the pure iron edge, which suggests that the bonding of iron in metallic glass is different from the pure iron metal.  相似文献   

10.
Neutron inelastic scattering has been used to study the longitudinal and one of the transverse acoustic phonons, propagating along the [001]1 direction in triclinic K1.75[Pt(CN)4]·1.5H2O. This material appears to be a quasi-one-dimensional conductor, with a commensurate distortion. We observe a reasonably well defined Kohn anomaly, which shows little temperature dependence between 80 and 300 K.  相似文献   

11.
Layered single crystals of the (BEDO-TTF)6[M(CN)6](H3O,CH3CN)2 (M = Fe, Cr) compounds with alternating conducting layers of BEDO-TTF and [M(CN)6](H3O,CH3CN)2 are studied. The contributions to the magnetic susceptibility from charge carriers in BEDO-TTF layers and from the subsystem of localized magnetic moments of iron (or chromium) transition metal complexes are separated for both compounds under investigation. It is revealed that the crystals with [Fe(CN))6]3− anions at a temperature of ∼80 K and the crystals with [Cr(CN))6]3− anions at ∼30 K undergo magnetic transitions which are accompanied by drastic changes in the parameters of the EPR lines associated with the BEDO-TTF layers and the subsystem of localized spins of transition metal complexes. It is established that the presence of the BEDO-TTF layers in the structure affects the magnetic properties of iron and chromium hexacyanide complexes. Original Russian Text ? R.B. Morgunov, E.V. Kurganova, T.G. Prokhorova, E.B. Yagubskiĭ, S.V. Simonov, R.P. Shibaeva, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 4, pp. 657–663.  相似文献   

12.
Far infrared and infrared reflection measurements on single crystals of the one dimensional conductor K2[Pt(CN)4] Br0.3 · 3H2O have been performed at 4.2K, 62K and 300K for light polarized parallel (E6z) and perpendicular (E ? z) to the platinum chains. At 4.2K and 62K a strong structure is observed in the E6z spectrum near 40 cm-1 which is not observable at 300K. This structure is interpreted as due to the Fröhlich collective 2qF-phonon mode.  相似文献   

13.
14.
99Ru,61Ni,57Fe and119Sn Mössbauer spectroscopic studies were made on ternary intermetallic compounds containing ruthenium, RuxY3?xZ (Y=Fe, Ni; Z=Si, Sn). In the system of RuxFe3?xSi, two different hyperfine magnetic fields were observed at the99Ru nuclei (H hf[Ru]) in the range ofx≤1.0 and the magnitude of eachH hf[Ru] was found to decrease with an increase in the ruthenium concentrationx. Both the99Ru and119Sn Mössbauer spectra of Ru2FeSn could be analyzed with two sets of magnetically split lines. The61Ni Mössbauer spectra of Ru2NiSn were obtained at 5 and 77 K.  相似文献   

15.
The sonochemiluminescence spectra of electron-excited ions *[Ru(bpy)3]2+ was registered for the first time during sonolysis of argon saturated aqueous solutions of Ru(bpy)3Cl2 with low concentration. At single-bubble sonolysis, the luminescence band of ruthenium is recorded at a concentration of Ru(bpy)3Cl2 from 10−6 M, and at multibubble from 10−5 M. Possible mechanisms for the appearance of the band of a tris-bipyridyl ruthenium(II) complex on the background of an structureless continuum of water in the spectra of sonoluminescence are analyzed. Based on the results of the comparison of the sonoluminescence spectra of Ru(bpy)3Cl2 aqueous solutions with the sonoluminescence spectra of aqueous solutions of rhodamine B (which has a high quantum yield of photoluminescence) it was established that a possible mechanism of sonophotoluminescence does not play a decisive role in ruthenium sonoluminescence. The effect of radical acceptors (O2, C2H5OH, Cd2+, I) on ruthenium sonoluminescence is analyzed. The most significant mechanism for the formation of electron-excited ions *[Ru(bpy)3]2+ during sonolysis is the sonochemiluminescence in oxidation-reduction reactions involving [Ru(bpy)3]2+ ions and radical products of sonolysis of water (OH, H, eaq) in the solution volume.  相似文献   

16.
A new sorbent T-55 with mixed ferrocyanide surface modification developed for Cs+ sorption was characterized using Mössbauer spectroscopy with a high velocity resolution in comparison with K2Ni[Fe(CN)6] and K4[Fe(CN)6 samples. The main sorption active component of T-55 sorbent was determined as K2Ni[Fe(CN)6].  相似文献   

17.
A Prussian blue type compound of the stoichiometric composition UIV[MnII(CN)6]·5H2O has been prepared. It has been shown that the compound exhibits ferrimagnetism with a Curie temperature Tc=36.8 K.  相似文献   

18.
A discussion of the paper “A neutron diffraction study of structural changes in one-dimensional K2[Pt(CN)4]Br0.3·3H2O from 77–323°K” which appeared in Solid State Commun.17, 45–48 (1975) and of related papers.Single crystal X-ray and neutron diffraction investigations show without any doubt that the crystal structure of KCP contains a third not fully occupied water position, whereby the correspondent water molecule fills alternatively with Br the center of the unit cell. Furthermore the D-atoms of this water position show occupational disorder. We found four possible arrangements for the D2O molecule. A second Br-site as reported by Williams et al. does not exist.  相似文献   

19.
The nanoparticles of Prussian blue-based molecular magnets, M 3[Cr(CN)6]2?zH2O (where M=Fe, Co, and Ni), prepared by a slow addition (drop by drop) of chemicals using the co-precipitation method, are investigated by means of X-ray diffraction, infra red spectroscopy and dc magnetization measurement techniques. The formation of nanoparticles has been confirmed by scanning electron microscopy, whereas the characteristic peak, observed in the range of 1900–2300 cm?1 in the infrared spectra, corresponds to the CN stretching frequency of $\mbox{Cr}^{\mathrm{+III}}$ –CN– $M^{\mathrm{+II}}$ , and confirms the formation of Prussian blue compounds. The results, derived from the Rietveld refinement of X-ray diffraction patterns, reveal that all samples are nanocrystalline in nature with a face-centered cubic crystal structure of space group Fm3m. The particle size and the lattice constants decrease with an increasing atomic number of the transition metals (M=Fe, Co and Ni). The magnetization data show a magnetically ordered state of all nanoparticle samples with a low coercivity (except for the Fe3[Cr(CN)6]2?zH2O) as well as the remanent magnetization. In addition, by varying M with Fe, Co and Ni, the magnetic ordering temperature increases from ~12 to ~28 K, whereas the maximum magnetization and the coercive field decrease from ~14 to ~4.5 μB/f.u. and ~554 to ~22 Oe, respectively. The observed magnetization behavior has been discussed in terms of the structural changes due to the decreasing particle size as well as the varying nature of the metal ions.  相似文献   

20.
Cyanide-bridged bimetallic assembly [Mn(cyclam)][Fe(CN)6]·3H2O (cyclam=1,4,8,11-tetraazacyclotetradecane) was synthesized from the reaction of trans-[MnCl2(cyclam)]Cl with K3Fe(CN)6. A linear chain structure consisting of alternating [Mn(cyclam)]3+ and [Fe(CN)6]3− units was indicated by the IR and Mössbauer spectra. The variable-temperature magnetization and Mössbauer measurements revealed that this complex exhibited a long-range ordering below 6.8 K. The magnetic behavior of the complex was based on intrachain ferromagnetic and interchain antiferromagnetic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号