首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid ion chromatographic separations of small inorganic anions are performed on columns packed with high-pH resistant Zorbax Extend-C18 1.8 microm silica particles. Seven anions (iodate, chloride, nitrite, bromide, nitrate, phosphate, sulphate) are separated with 1.3 and 2 cm long x 0.46 cm I.D. C18 columns coated with the surfactant didodecyldimethylammonium bromide (DDAB). A 40 s separation is achieved at 2 mL/min with a 2.5 mM 4-hydroxybenzoic acid eluent at pH 10. Finally, the DDAB removal procedure is improved to eliminate the pressure build-up caused by precipitation of the surfactant in the column upon uncoating.  相似文献   

2.
A silica monolith column (Merck Chromolith, 100 mm x 4.6 mm) has been coated with Dionex AS9-SC latex nanoparticles to convert the column into an anion-exchange stationary phase. For comparison purposes, a reversed-phase silica monolith was also converted into an anion-exchange column by coating with the cationic surfactant didodecyldimethylammonium bromide (DDAB). Separations of common inorganic anions were carried out using 7.5 or 5.0 mM 4-hydroxybenzoic acid at pH 7.0 along with suppressed conductivity detection. Direct comparisons were then made between the two columns in terms of selectivity, efficiency and stability. The latex-coated column was on average 50% more efficient than the DDAB-coated column. A 10% decrease in retention times was observed on the DDAB column over 11 h of continuous eluent flow, while the latex coating exhibited <1% change in retention even after 2.5 months of periodic use.  相似文献   

3.
Capillary electrophoretic separations of inorganic anions are performed using a capillary coated with a mixture of the cationic surfactant didodecyldimethylammonium bromide (DDAB) and the zwitterionic surfactant 1,2-dilauroyl-sn-phosphatidylcholine (DLPC). These double-chained surfactants form semi-permanent coatings on the capillary wall, which allows the excess surfactant to be removed from the buffer prior to separation. Interactions between surfactant aggregates in the buffer and analyte anions are thus eliminated. The electroosmotic flow (EOF) can be altered from fully reversed (100% DDAB) to near zero (100% DLPC) using different ratios of DDAB and DLPC. Controlling the EOF allows for improved resolution of the anions while maintaining a rapid, co-EOF separation, free from analyte-surfactant additive interactions.  相似文献   

4.
Capillaries (25-and 50-μm inner diameter) coated with a double-alkyl-chain cationic surfactant N,N-didodecyl-N,N-dimethylammonium bromide (DDAB) were used for the separation of four basic standard proteins in buffers of pH 4 at various ionic strengths. The choice of buffer is critical for the analytical performance. Ammonium ions must be avoided in the buffer used in the non-covalent coating procedure owing to competition with the surfactant. Phosphate buffer gave a better separation performance than some volatile buffers; the reason seems to be a complex formation between the proteins and dihydrogenphosphate ions, which decreases tendencies for adsorption to the capillary surface. The DDAB coating was easy to produce and stable enough to permit, without recoating, consecutive separations of the proteins for up to 100 min with good precision in migration times and peak areas. A strong electroosmotic flow gives rapid separations, which is of special importance when commercial instruments are used, since the choice of the length of the capillary is restricted. Figure EOF stability in 25 micrometer i.d. capillaries. Consecutive injections of mesityloxide performed after an initial coating with 1.0  相似文献   

5.
The use of nanoparticles (NPs) in immunodiagnostics is a challenging task for many reasons, including the need for miniaturization. In view of the development of an assay dedicated to an original, miniaturized and fully automated immunodiagnostics which aims to mimic in vivo interactions, magnetic zwitterionic bifunctional amino/polyethyleneoxide maghemite core/silica shell NPs functionalized with allergenic α‐lactalbumin were characterized by CE. Proper analytical performances were obtained through semi‐permanent capillary coating with didodecyldimethylammonium bromide (DDAB) or permanent capillary wall modification by hydroxypropylcellulose. The influence of experimental conditions (e.g. buffer component nature, pH, ionic strength, and electric field strength) on sample stability, electrophoretic mobility, and dispersion was investigated using either DDAB‐ or hydroxypropylcellulose‐coated capillaries. Adsorption to the capillary wall and aggregation phenomena were evaluated according to the CE conditions. The proper choice of experimental conditions, i.e. separation under −10 kV in a 25 mM ionic strength MES/NaOH (pH 6.0) with a DDAB‐coated capillary, allowed the separation of the grafted and the non‐grafted NPs.  相似文献   

6.
In this work, didecyldimethylammonium bromide (DDAB) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) (2.5:1) were used to prepare liposomes coated with polyacrylic acid (PAA) using "in situ" polymerization with 2.5, 5 and 25 mM of acrylic acid (AA). The PAA concentrations were chosen to achieve partially to fully covered capsules, and the polymerization reaction was observed with real-time monitoring using dynamic light scattering (NanoDLS). The DDAB:DOPE liposomes showed stability in the tested temperature range (25-70°C), whereas the results confirmed the success of the polymerization according to superficial charge (zeta potential of +66.7±1.2 mV) results and AFM images. For the liposomes that were fully coated with PAA (zeta potential of +0.3±3.9 mV), cytotoxicity was independent of the concentration of albumin. Cationic liposomes and nanocapsules of the stable liposomes coated with PAA were obtained by controlling the surface charge, which was the most important factor related to cytotoxicity. Thus, a potential, safe drug nanocarrier was successfully developed in this work.  相似文献   

7.
Fast ion-exchange chromatography has been developed and applied to the separation of common inorganic anions. Using a didodecyldimethylammonium bromide (DDAB) coated short (30 mm x 4.6 mm) ODS analytical column (3-microm particle size) and a 5 mM phthalate eluent (pH 7.5) the isocratic separation of nine common anions in 160 s was possible, with the first seven anions, including phosphate, chloride and sulphate, separated within 65 s. Detection was achieved using indirect UV at 279 nm. The high capacity, highly hydrophobic ion-exchange coating demonstrated excellent stability over time, even at elevated temperatures (45 degrees C) and exhibited unusual selectivity for common anions (retention order=fluoride, carbonate, phosphate, chloride, bromate, nitrite, sulphate, bromide and nitrate). The developed chromatography was successfully applied to the rapid analysis of river water and seawater samples.  相似文献   

8.
Li Y  Liu Q  Yao S 《Talanta》2008,75(3):677-683
The cationic double-chained surfactant didodecyldimethylammonium bromide (DDAB) was used as pseudostationary phase (PSP) in micellar electrokinetic capillary chromatography (MEKC). Its performance on the three kinds of drugs, i.e., basic, acidic, and neutral drugs, was systematically investigated. Nicotine, cotinine, caffeine, lidocaine, and procaine were selected as the model basic drugs. Good baseline separation and high efficiency were obtained under the optimal separation condition that consisted of 50mM phosphate (pH 4.0) and 0.08 mM DDAB. Three basic phenylenediamine isomers can also be well separated with DDAB in buffer. In addition, DDAB can form cationic bilayer on the capillary wall, thus the wall adsorption of basic analytes was greatly suppressed. Compared with commonly used CTAB, the separation of basic drugs was significantly improved with a much lower amount of DDAB present in the buffer. The DDAB-involved MEKC also showed superiority to CTAB upon the separation of acidic drugs, amoxicillin and ampicillin. In the case of neutral compounds, a good separation of resorcinol, 1-naphthol and 2-naphthol was achieved with 0.1mM DDAB and 30% (v/v) acetonitrile (ACN) present in buffer. Hence, it was concluded that the double-chained cationic surfactant DDAB can be a good substitute for traditional single-chained surfactant CTAB in MEKC.  相似文献   

9.
Effects of micelle-to-vesicle transitions on the degree of counterion binding (beta) were investigated on three systems. For the concentration-dependent micelle-to-vesicle transition in the didodecyldimethylammonium bromide (DDAB)/water system, in the region of coexistent micelles and vesicles, less than 3 mM, the beta values increased significantly with DDAB concentration: beta (0.07 mM)=0.35 and beta (3 mM)=0.93. In the coexistent region, activities of the bromide ion, a(Br), were almost independent of the DDAB concentration, suggesting the pseudo-phase nature of both micelles and vesicles. In the concentration-dependent vesicle-to-lamellar transition region above 5 mM, where multilamellar vesicles were prevailing, on the other hand, the beta values were only little affected by this transition. This suggests that the increase in the layer number of DDAB multilamellar vesicles scarcely affects the beta values. This was also supported by the fact that the destruction of multilamellar vesicles by ultrasonication did not change the beta values. These results strongly suggest that the inner and outer monolayers of DDAB multilamellar vesicles are characterized by similar beta values. The second system, cetyltrimethylammonium bromide (CTAB)/DDAB mixtures, showed composition-dependent transitions depending on the mole fraction of DDAB X(DDAB): spherical micelles (0rodlike micelles (0.2vesicles (0.6相似文献   

10.
When a solid substrate with negative surface charges was placed in an aqueous didodecyldimethylammonium bromide (DDAB) vesicle dispersion, the cationic surfactant DDAB with two hydrocarbon chains could be assembled into the biomembrane-like tail-to-tail double-layer structure on the solid surface with the positively charged head groups toward outside, making the surface charge reverse from negative to positive. After the solid substrate with DDAB was immersed in a hemoglobin (Hb) solution at pH 9.0, the negatively charged Hb was adsorbed on the surface of DDAB layer by electrostatic attraction, forming a DDAB/Hb film. By repeating this adsorption cycle, the {DDAB/Hb}(n) layer-by-layer films were assembled on solid surfaces, which was confirmed by UV-vis spectroscopy, quartz crystal microbalance (QCM), and cyclic voltammetry (CV). The stable {DDAB/Hb}(n) films assembled on pyrolytic graphite (PG) electrodes showed two pairs of nearly reversible redox peaks at about -0.22 and -1.14 V vs SCE in pH 7.0 buffers, characteristic of the Hb heme Fe(III)/Fe(II) and Fe(II)/Fe(I) redox couples, respectively. The direct electrochemistry of Hb in the films could be used to electrocatalyze reduction of various substrates. UV-vis and IR spectroscopic results and comparison experiments with {DDAB/hemin}(n) films indicate that Hb in the {DDAB/Hb}(n) films essentially retains its native structure. Atomic force microscopy (AFM) was used to characterize the morphology of the films with different outermost layers.  相似文献   

11.
Bingyan Han 《Talanta》2009,79(3):959-962
This paper described a double-chained cationic surfactant, didodecyldimethylammonium bromide (DDAB), for dynamic surface modification of poly(dimethylsiloxane) (PDMS) microchips to reduce the fluorescent dyes adsorption onto the microchannel. When DDAB with a high concentration was present as the dynamic modification reagent in the running and sample buffer, it not only reversed the direction of electroosmotic flow, but also efficiently suppressed fluorescent dyes pyronine Y (PY) or rhodamine B (RB) adsorption onto the chip surface. In addition, vesicles formed by DDAB in the buffer with higher surface charge density and electrophoretic mobility could provide wider migration window and potential for the separation of compounds with similar hydrophobicity. Factors affecting modification, such as pH and concentrations of the buffer, DDAB concentration in the buffer were investigated. Compared with commonly used single-chained cetyltrimethylammonium bromide, DDAB provided a better modification performance. Furthermore, PY and RB were separated successfully on a PDMS microchip at the appropriate conditions with DDAB.  相似文献   

12.
Didodecyldimethylammonium bromide (DDAB) lipid bilayer-protected gold nanoparticles (AuNPs), which were stable and hydrophilic, were synthesized by in situ reduction of HAuCl(4) with NaBH(4) in an aqueous medium in the presence of DDAB. As-prepared nanoparticles were characterized by UV-vis spectra, transmission electron microscopy, dynamic light scattering analysis, and X-ray photoelectron spectroscopy. All these data supported the formation of AuNPs. Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis/thermogravimetric analysis data revealed that DDAB existed in a bilayer structure formed on the particle surface, resulting in a positively charged particle surface. The FTIR spectra also indicated that the DDAB bilayer coated on the surface of AuNPs was probably in the ordered gel phase with some end-gauche defects. On the basis of electrostatic interactions between such AuNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AuNP)(n)() multilayers on a cationic polyelectrolyte poly(ethylenimine) coated indium tin oxide substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-vis spectra and atomic force microscopy.  相似文献   

13.
The thermotropic phase behavior of cationic liposomes in mixtures of two of the most investigated liposome-forming double-chain lipids, dioctadecyldimethylammonium bromide (DODAB) and didodecyldimethylammonium bromide (DDAB), was investigated by differential scanning calorimetry (DSC), turbidity, and Nile Red fluorescence. The dispersions were investigated at 1.0 mM total surfactant concentration and varying DODAB and DDAB concentrations. The gel to liquid-crystalline phase transition temperatures (Tm) of neat DDAB and DODAB in aqueous dispersions are around 16 and 43 degrees C, respectively, and we aim to investigate the Tm behavior for mixtures of these cationic lipids. Overall, DDAB reduces the Tm of DODAB, the transition temperature depending on the DDAB content, but the Tm of DDAB is roughly independent of the DODAB concentration. Both DSC and fluorescence measurements show that, within the mixture, at room temperature (ca. 22 degrees C), the DDAB-rich liposomes are in the liquid-crystalline state, whereas the DODAB-rich liposomes are in the gel state. DSC results point to a higher affinity of DDAB for DODAB liposomes than the reverse, resulting in two populations of mixed DDAB/DODAB liposomes with distinctive phase behavior. Fluorescence measurements also show that the presence of a small amount of DODAB in DDAB-rich liposomes causes a pronounced effect in Nile Red emission, due to the increase in liposome size, as inferred from turbidity results.  相似文献   

14.
Separations of common inorganic anions were carried out on three different surfactant coated media using carbonate/bicarbonate eluents with suppressed conductivity detection. Graphitic carbon columns (porous graphitic carbon and carbon-clad zirconia) packed with 3 microm particles have been converted into anion-exchange stationary phases by equilibration with the cationic surfactants: didodecyldimethylammonium bromide (DDAB); cetyltrimethylammonium bromide (CTAB); and cetylpyridinium chloride (CPC). Additionally, an ethylene-bridged silica column was studied with CPC coatings. Porous graphitic carbon (PGC) columns coated with DDAB exhibited pressure increases and loss of resolution at higher capacities. CPC coatings on PGC exhibited better repeatability and efficiencies of 5.0 x 10(4)plates/m. However, CPC coatings exhibited a 15% loss in retention factor with <1.2 x 10(3) column volumes on PGC. Conversely, the ethylene-bridged silica column showed complete failure in less than 8 h of use. As with PGC, carbon-clad zirconia coated with CPC showed an initial loss of capacity, but thereafter was stable for more than 1.7 x 10(3) column volumes (t(r) RSD<2%).  相似文献   

15.
A simple coating procedure for generation of a high and pH-independent electroosmotic flow in capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) is described. The bilayer coating was formed by noncovalent adsorption of the ionic polymers Polybrene and poly(vinylsulfonate) (PVS). A stable dynamic coating was formed when PVS was added to the background electrolyte. Thus, when the PVS concentration in the background electrolyte was optimized for CZE (0.01%), the EOF differed less than 0.3% after 54 runs. The electroosmotic mobility in the coated capillaries was (4.9+/-0.1) x 10(-4) cm2V(-1)s(-1) in a pH-range of 2-10 (ionic strength = 30 mM). When alkaline compounds were used as test substances intracapillary and intercapillary migration time variations (n = 6) were less than 1% relative standard deviation (RSD) and 2% RSD, respectively in the entire pH range. The coating was fairly stable in the presence of sodium dodecyl sulfate, and this made it possible to perform fast MEKC separations at low pH. When neutral compounds were used as test substances, the intracapillary migration time variations (n = 6) were less than 2% RSD in a pH range of 2-9. In addition to fast CZE and MEKC separations at low pH, analysis of the alkaline compounds by CE-MS was also possible.  相似文献   

16.
Carrero H  Rusling JF 《Talanta》1999,48(3):711-718
High pressure liquid chromatography (HPLC) using an electrochemical (EC) detector electrode of pyrolytic graphite coated with a film of ionomer Nafion and the water-insoluble surfactant didodecyldimethylammonium bromide (DDAB) was used to achieve separation and detection of all six bromo- and chloro-acetic acids. The Nafion-DDAB film preconcentrates the acid anions facilitating their electrochemical detection by direct reduction at -1.2 V versus SCE. Detection limits were poorer than the EPA-approved GC-ECD method, but HPLC-EC avoids the derivatization necessary for GC. The HPLC-EC method also detected tribromoacetic acid, which has not been determined simultaneously with other halogenated acids by reported chromatographic methods. The HPLC-EC method using a Nafion-DDAB-coated detector electrode gave comparable results to GC-ECD for the determination of TCA in drinking water.  相似文献   

17.
Pure ceria powders, CeO(2), were synthesized in heptane-microemulsified aqueous solutions of CeCl(3) or Ce(NO(3))(3) stabilized by AOT (sodium bis(2-ethylhexyl) sulfosuccinate), DDAB (di-n-didodecyldimethylammonium bromide), or DDAB + Brij 35 surfactant mixtures. Micellar DTAB (n-dodecyltrimethylammonium bromide) and vesicular DDAB systems were also used as media for generating CeO(2). Characterization of the powders by X-ray powder diffractometry, laser-Raman spectroscopy, and Fourier transform infrared spectroscopy revealed that in the presence of surfactants almost-agglomerate-free nanosized crystallites (6-13 nm) of anionic vacancy-free cubic CeO(2) were produced. In the absence of surfactants 21-nm-sized crystallites were formed, comparing with the 85-nm-sized crystallites when cubic CeO(2) was created via thermal decomposition of cerium oxalate. Surface characterization, by X-ray photoelectron spectroscopy, N(2) sorptiometry, and high-resolution electron microscopy showed AOT- or (DDAB + Brij 35)-stabilized microemulsions to assist in formation of crystallites exposing surfaces of large specific areas (up to ca. 250 m(2)/g) but of low stability to high-temperature calcination (28-13 m(2)/g at 800 degrees C). In contrast, the double-chained DDAB was found to generate cubic CeO(2) crystallites of lower initial surface areas (144 (microemulsion) to 125 (vesicles) m(2)/g)) but of higher thermal stability (55-45 m(2)/g at 800 degrees C). Hence, the latter cerias could be considered as appropriate components for total oxidation (combustion) catalysts.  相似文献   

18.
Effective enhancement of electrochemiluminescence (ECL) of peroxydisulfate on a C60/didodecyldimethyl ammonium bromide (C60/DDAB) film coated glassy carbon electrode (GCE) surface is reported in this paper. The C60/DDAB film gave lower cathodic current in the presence of peroxydisulfate than that from a bare GCE. To our surprise, electrochemiluminescent intensity from peroxydisulfate reduction was effectively enhanced on the C60/DDAB film, which was 50 times and 250 times higher than those from a DDAB film coated and bare GCE, respectively. Moreover, the ECL onset potential on the C60/DDAB film was about −0.9 V, which positively shifted 200 mV compared with that from the bare GCE. Dissolved oxygen and the applied potential also affected the electrochemiluminescent intensity. The presence of oxygen decreased the intensity, and the intensity reached maximum at the applied potential of −1.7 V. The unique property will greatly enrich ECL studies and applications based on fullerenes.  相似文献   

19.
Immobilization of polyclonal antibodies was studied on native screen-printed graphite electrodes (SPEs) and variously modified electrodes. SPEs coated with didodecylammonium bromide (DDAB, a synthetic membranelike substance) films with gold nanoparticles gave the maximum electrochemical response. DDAB and gold nanoparticle films strongly changed the surface morphology, and the electrochemical signal became more intense and stable. This immobilization method increased the concentration of immobilized antibodies while their activity was retained. The detection limit of the enzymatic label (horseradish peroxidase) was 0.02 ng/L of sample.  相似文献   

20.
In recent years, much effort has been made to produce gold (Au) nanorods of different sizes through the use of binary surfactant mixtures via a seed-mediated growth approach. However, how the ratio of two different surfactants influences the shape of the resulting Au nanoparticles remains to be elucidated. Here, we report the shape-controlled synthesis of Au nanoparticles using a binary surfactant mixture of CTAB (cetyltrimethylammonium bromide) and DDAB (didodecyldimethylammonium bromide) via a silver-assisted seed-mediated growth approach. Decreasing the CTAB/DDAB ratio results in a shape transition from Au nanorods to elongated tetrahexahedra and finally to Au bipyramids. The results showed significant improvement in the yield of Au bipyramidal type nanoparticles in different sizes (nm to μm) by using binary surfactant mixtures without any need for shape selection procedure. By varying the pH and concentration of ascorbic acid, we can control the shape and size of Au nanoparticles (i.e., truncated bipyramids, dogbones, and nanodumbbells) at fixed CTAB/DDAB ratios. A preliminary growth mechanism has been proposed based on the change in the mixed micelle soft-template induced by the increasing concentration of DDAB and reaction parameters (i.e., pH, concentration of ascorbic acid). These results constitute the advances in the understanding for synthesizing anisotropic Au nanoparticles of tunable optical properties via engineering the design of a soft-template. These anisotropic Au nanoparticles, especially, bipyramids of different morphologies and sizes are potential candidates for the enhancement of the optical response and developing label-free biosensing devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号