首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we have explored the conformational landscape of the indole···furan dimer in a supersonic jet by using resonant two-photon ionization (R2PI) and IR-UV double-resonance spectroscopic techniques combined with dispersion-corrected density functional theory (DFT) calculations. Only one conformer of the dimer has been observed in the experiment. DFT/B97-D level calculation shows that N-H···π hydrogen-bonded conformer (T') is energetically more stable than the N-H···O hydrogen-bonded conformer (HB). Natural bond orbital (NBO) calculation also shows that the hydrogen-bonding interaction in the HB conformer is very weak. Finally, the structure of the observed dimer has been determined to be tilted T-shaped N-H···π hydrogen-bonded (T') from very excellent agreement between experimental and theoretical N-H stretch frequency. The most significant finding of this study is the first-time observation of a N-H···π bound conformer of a dimer, which wins over a conventional hydrogen-bonded conformer of the dimer.  相似文献   

2.
The respective structures and stabilities of imidazole-imidazole, benzene-imidazole, and benzene-indole dimers have been investigated using different DFT-D functional, MP2, CCSD(T), and SAPT levels of theory with a medium basis set. Comparative analysis of binding energies and structural parameters of the dimers points to a preference for stacking contact or hydrogen bond in an imidazole-imidazole dimer. In contrast, a T-shaped configuration with H-π interaction is maximally advantageous for benzene-imidazole and benzene-indole dimers. High-level ab initio calculations at the CCSD(T)/CBS and DFT-SAPT levels show that classical hydrogen-bonded tilted imidazole-imidazole dimer is a global minimum structure and that it has high electrostatic energy. However, for benzene-imidazole and benzene-indole dimers, the global minimum (N-H···π) structure has high electrostatic energy as well as dispersion energy.  相似文献   

3.
N-H···π hydrogen-bonded (H-bonded) structures were studied by applying vibrational spectroscopy to self-aggregate clusters of 2,5-dimethylpyrrole (DMPy) and its binary clusters with pyrrole (Py). The NH stretching vibrations of jet-cooled clusters were observed by IR cavity ringdown spectroscopy. A combination of experiments and density functional theory calculations revealed the stable structures, intermolecular binding energies, and harmonic vibrational frequencies. The IR spectrum of the DMPy self-aggregate clusters was very similar in spectral features to that of the Py clusters in a previous work. The observed NH stretching vibrations at 3505, 3420, 3371, and 3353 cm(-1) are simultaneously red-shifted by ~25 cm(-1) from the Py monomer, dimer, trimer, and tetramer, respectively. Based on a spectral analogy of DMPy with Py, and a consistency of the calculated harmonic frequencies with experiments, the H-bonded structures of the DMPy clusters were determined to be of a T-shape for a dimer and a cyclic for a trimer and a tetramer. For the DMPy-Py binary clusters, we discussed the stability and geometry of the N-H···π interactions in the T-shaped dimer and the cyclic trimer. The binary dimer showed the only single NH stretch at 3419 cm(-1) in the IR spectrum. A vibrational analysis of the H-bonded NH stretches as well as the calculated stabilization energies deduced that only the binary dimer by DMPy as an acceptor and Py as a donor can exist in a supersonic jet. For binary trimers, NH stretches were observed due to both (DMPy)(2)-(Py)(1) and (DMPy)(1)-(Py)(2). They were found to have different vibrational patterns from each other; the former showed three dispersed NH stretches, and the other had two quasi-degenerate NH stretches. Throughout this study, we also considered the intermolecular geometries, such as the H-bond distance and the angle in terms of the methyl group substitution effect.  相似文献   

4.
Benzene-methanol cluster structures were investigated with theoretical chemistry methods to describe the microsolvation of benzene and the benzene-methanol azeotrope. Benzene-methanol (MeOH) clusters containing up to six methanol molecules have been calculated by ab initio [MP2/6-311++G(d,p)//MP2/6-31+G(d,p) + BSSE correction] method. The BSSE was found quite large with this basis set, hence, different extrapolation schemes in combination with the aug-cc-pVxZ basis sets have been used to estimate the complete basis set limit of the MP2 interaction energy [ΔE(MP2/CBS)]. For smaller clusters, n ≤ 3, DFT procedures (DFTB+, MPWB1K, M06-2X) have also been applied. Geometries obtained for these clusters by M06-2X and MP2 calculations are quite similar. Based on the MP2/CBS results, the most stable C(6)H(6)(MeOH)(3) cluster is characterized by a hydrogen bonded MeOH trimer chain interacting with benzene via π···H-O and O···H-C(benzene) hydrogen bonds. Larger benzene-MeOH clusters with n ≥ 4 consist of cyclic (MeOH)(n) subclusters interacting with benzene by dispersive forces, to be denoted by C(6)H(6) + (MeOH)(n). Interaction energies and cooperativity effects are discussed in comparison with methanol clusters. Besides MP2/CBS calculations, for selected larger clusters the M06-2X/6-311++G(d,p)//M06-2X/6-31+G(d,p) procedure including the BSSE correction was also used. Interaction energies obtained thereby are usually close to the MP2/CBS limit. To model the benzene-MeOH azeotrope, several structures for (C(6)H(6))(2)(MeOH)(3) clusters have been calculated. The most stable structures contain a tilted T-shaped benzene dimer interacting by π···H-O and O···H-C (benzene) hydrogen bonds with a (MeOH)(3) chain. A slightly less negative interaction energy results for a parallel displaced benzene sandwich dimer with a (MeOH)(3) chain atop of one of the benzene molecules.  相似文献   

5.
The N-H···π hydrogen bond is an important intermolecular interaction in many biological systems. We have investigated the infrared (IR) and ultraviolet (UV) spectra of the supersonic-jet cooled complex of pyrrole with benzene and benzene-d(6) (Pyr·Bz, Pyr·Bz-d(6)). DFT-D density functional, SCS-MP2 and SCS-CC2 calculations predict a T-shaped and (almost) C(s) symmetric structure with an N-H···π hydrogen bond to the benzene ring. The pyrrole is tipped by ω(S(0)) = ±13° relative to the surface normal of Bz. The N···ring distance is 3.13 ?. In the S(1) excited state, SCS-CC2 calculations predict an increased tipping angle ω(S(1)) = ±21°. The IR depletion spectra support the T-shaped geometry: The NH stretch is redshifted by -59 cm(-1), relative to the "free" NH stretch of pyrrole at 3531 cm(-1), indicating a moderately strong N-H···π interaction. The interaction is weaker than in the (Pyr)(2) dimer, where the NH donor shift is -87 cm(-1) [Dauster et al., Phys. Chem. Chem. Phys., 2008, 10, 2827]. The IR C-H stretch frequencies and intensities of the Bz subunit are very similar to those of the acceptor in the (Bz)(2) dimer, confirming that Bz acts as the acceptor. While the S(1)←S(0) electronic origin of Bz is forbidden and is not observable in the gas-phase, the UV spectrum of Pyr·Bz in the same region exhibits a weak 0 band that is red-shifted by 58 cm(-1) relative to that of Bz (38?086 cm(-1)). The origin appears due to symmetry-breaking of the π-electron system of Bz by the asymmetric pyrrole NH···π hydrogen bond. This contrasts with (Bz)(2), which does not exhibit a 0 band. The Bz moiety in Pyr·Bz exhibits a 6a band at 0 + 518 cm(-1) that is about 20× more intense than the origin band. The symmetry breaking by the NH···π hydrogen bond splits the degeneracy of the ν(6)(e(2g)) vibration, giving rise to 6a' and 6b' sub-bands that are spaced by ~6 cm(-1). Both the 0 and 6 bands of Pyr·Bz carry a progression in the low-frequency (10 cm(-1)) excited-state tipping vibration ω', in agreement with the change of the ω tipping angle predicted by SCS-MP2 and SCS-CC2 calculations.  相似文献   

6.
Benzene dimer configurations namely T-shaped, parallel-displaced, sandwich, and V-shaped that were proposed by experimental studies are investigated using second- and fourth-order Møller–Plesset perturbation theory. The MP2 method with aug-cc-pVDZ and aug-cc-pVTZ basis sets unequivocally shows that the parallel-displaced configuration is considerably more stable than T-shaped structure. On the other hand, the MP4(SDTQ)/aug-cc-pVDZ level predicts that the T-shaped and parallel-displaced configurations are nearly isoenergetic, which is parallel to the previous results of estimated CCSD(T)/CBS level reported recently. The lowest energy T-shaped configuration is stabilized by 0.17 kcal/mol over the parallel-displaced configuration at the MP4(SDTQ)/aug-cc-pVDZ level. Although the structures of all the four different types of configurations are found to be stable at both MP2 and full MP4 methods, the V-shaped configuration is the least stable among them. The calculated interaction energy of ?2.3 kcal/mol for the lowest energy T-shaped structure at the MP4(SDTQ)/aug-cc-pVDZ level is in good agreement with the experimental value of ?2.4 ± 0.4 kcal/mol. We conclude that the MP4(SDTQ) with a reasonably good basis set can be used for systems involving π–π interactions to obtain qualitative and quantitative results.  相似文献   

7.
In the present work, we have investigated the structure of 7-azaindole···2-fluoropyridine dimer in a supersonic jet by employing resonant two photon ionization (R2PI), IR-UV, and UV-UV double resonance spectroscopic techniques combined with quantum chemistry calculations. The R2PI spectrum of the dimer is recorded by electronic excitation of the 7-azaindole moiety, and a few low frequency intermolecular vibrations of the dimer are clearly observed in the spectrum. The electronic origin band of the dimer is red-shifted by 1278 cm(-1) from the S(1) ← S(0) origin band of 7-azaindole monomer. The presence of a single conformer of the dimer is confirmed by IR-UV and UV-UV hole-burning spectroscopic techniques. RIDIR (Resonant ion dip infrared) spectrum of the dimer shows a red-shift of 265 cm(-1) in the N-H stretching frequency with respect to that of the 7-azaindole monomer. Two planar double hydrogen bonded cyclic structures of the dimer have been predicted from DFT calculations. Comparison of experimental and theoretical N-H stretching frequencies confirms that the observed dimer is stabilized by N-H···N and C-H···N hydrogen bonding interactions. The less stable conformer with N-H···F and C-H···N interactions are not observed in the experiment. The competition between N-H···N and N-H···F interactions in the two dimeric structures are discussed from natural bond orbital (NBO) analysis. The current results demonstrate that fluorine makes a hydrogen bond of intermediate strength through cooperative interaction of another hydrogen bond (C-H···N) present in the dimer, although fluorine is believed to be very weak hydrogen bond acceptor.  相似文献   

8.
Resonant two photon ionization (R2PI), IR-UV, and UV-UV double resonance spectroscopic techniques combined with quantum chemistry calculations have been used to determine the structure of indole???thiophene dimer observed in a supersonic jet. With the help of combined experimental and theoretical IR spectra it has been found that the observed dimer has a N-H???π hydrogen bonded slanted T-shaped structure. The present study demonstrates the effect of heteroatoms present in the acceptors on the strength of the π-hydrogen bonding interactions. It was concluded by Sherrill and co-workers from their theoretical study of benzene???pyridine dimer that aromatic rings containing heteroatoms are poorest π-hydrogen bond acceptors [E. G. Hohenstein and C. D. Sherrill, J. Phys. Chem. A 113, 878 (2009)]. But the current spectroscopic investigation exhibits that five membered aromatic heterocycles are favorable π-hydrogen bond acceptors. In this study, it has also been shown that thiophene is a better π-hydrogen bond acceptor than furan. The present work has immense biological significance as indole is the chromophore of tryptophan residue in the proteins and thiophene derivatives have potential therapeutic applications. Thus, understanding the binding motif between indole and thiophene in the heterodimer studied in this work may help in designing efficient drugs.  相似文献   

9.
Three low-energy structures of the benzene dimer are investigated by several theoretical procedures (RI-MP2, CCSD(T), RI-DFT-D, DFT/BH&H) covering London dispersion energy. The RI-DFT-D and CCSD(T) calculations are used to verify the DFT/BH&H dimer characteristics, as only at this level can anharmonic calculations be performed. It is ascertained that the T-shaped (C(2v)) structure, in which the C-H stretching frequency of the proton donor shows a significant blue shift, is not stable at any level of theory. It is either a transition structure or a minimum which is easily transformed into a parallel-displaced structure or a T-shaped (C(s)) structure, even at low temperature. Consequently, no blue shift can be detected. On the other hand, the calculated anharmonic IR spectra of the two most stable structures of benzene dimer, namely, the T-shaped (C(s)) and the parallel-displaced ones, give rise to a small red (and no blue) shift of the C-H stretching vibration. This finding is fully consistent with the experimental results.  相似文献   

10.
The 2-aminopyridine2-pyridone (2AP2PY) dimer is linked by N-H...O=C and N-H...N hydrogen bonds, providing a model for the Watson-Crick hydrogen bond configuration of the adenine.thymine and adenine.uracil nucleobase pairs. Mass-specific infrared spectra of 2AP2PY and its seven N-H deuterated isotopomers have been measured between 2550 and 3650 cm(-1) by IR laser depletion combined with UV two-color resonant two-photon ionization. The 2PY amide N-H stretch is a very intense band spread over the range 2700-3000 cm(-1) due to large anharmonic couplings. It is shifted to lower frequency by 710 cm(-1) or approximately 20% upon H bonding to 2AP. On the 2AP moiety, the "bound" amino N-H stretch gives rise to a sharp band at 3140 cm(-1), which is downshifted by 354 cm(-1) or approximately 10% upon H bonding to 2PY. The amino group "free" N-H stretch and the H-N-H bend overtone are sharp bands at approximately 3530 cm(-1) and 3320 cm(-1). Ab initio structures and harmonic vibrations were calculated at the Hartree-Fock level and with the PW91 and B3LYP density functionals. The PW91/6-311++G(d,p) method provides excellent predictions for the frequencies and IR intensities of all the isotopomers.  相似文献   

11.
The hydrogen bonding interaction of 1:1 dimer formed between HNO and HArF molecule has been completely investigated in the present study using Second-order M?ller-Plesset Perturbation (MP2) method in conjunction with 6-311+G**, 6-311++G** and 6-311++G(2d,2p) basis sets. The standard and CP-corrected calculations have been employed to determine the equilibrium structures, the vibrational frequencies and interaction energies. The interaction energies of the dimers were also calculated at G2MP2 level. Two stable structures are found as the minima. Dimer I(H···F)is a five-membered cyclic hydrogen bonded structure and is more stable than the Dimer II(H···O). The blue-shifted N-H···F hydrogen bond is confirmed with standard and CP-corrected calculations by the MP2 and DFT methods in conjunction with different basis sets. The results obtained at MP2 in conjunction with different basis sets show there is a red-shifted hydrogen bond (Ar-H···O) in the Dimer II(H···O). The topological and electronic properties, the origin of red- and blue-shifted hydrogen bonds were investigated at MP2/6-311++G(2d,2p) with CP corrected calculations. From the NBO analysis, the reasonable explanations for the red- and blue-shifted hydrogen bonds were proposed.  相似文献   

12.
The ability of several density-functional theory (DFT) exchange-correlation functionals to describe hydrogen bonds in small water clusters (dimer to pentamer) in their global minimum energy structures is evaluated with reference to second order Moller-Plesset perturbation theory (MP2). Errors from basis set incompleteness have been minimized in both the MP2 reference data and the DFT calculations, thus enabling a consistent systematic evaluation of the true performance of the tested functionals. Among all the functionals considered, the hybrid X3LYP and PBE0 functionals offer the best performance and among the nonhybrid generalized gradient approximation functionals, mPWLYP and PBE1W perform best. The popular BLYP and B3LYP functionals consistently underbind and PBE and PW91 display rather variable performance with cluster size.  相似文献   

13.
o-(N,N-Dialkylaminomethyl)arylboronate systems are an important class of compounds in diol-sensor development. We report results from a computational investigation of fourteen o-(N,N-dialkylaminomethyl)arylboronates using second-order M?ller-Plesset (MP2) perturbation theory. Geometry optimizations were performed at the MP2/cc-pVDZ level and followed by single-point calculations at the MP2/aug-cc-pVDZ(cc-pVTZ) levels. These results are compared to those from density functional theory (DFT) at the PBE1PBE(PBE1PBE-D)/6-311++G(d,p)(aug-cc-pVDZ) levels, as well as to experiment. Results from continuum PCM and CPCM solvation models were employed to assess the effects of a bulk aqueous environment. Although the behavior of o-(N,N-dialkylaminomethyl) free acid and ester proved to be complicated, we were able to extract some important trends from our calculations: (1) for the free acids the intramolecular hydrogen-bonded B-O-H···N seven-membered ring conformers 12 and 16 are found to be slightly lower in energy than the dative-bonded N→B five-membered ring conformers 10 and 14 while conformers 13 and 17, with no direct boron-nitrogen interaction, are significantly higher in energy than 12 and 16; (2) for the esters where no intramolecular B-O-H···N bonded form is possible, the N→B conformers 18 and 21 are significantly lower in energy than the no-interaction forms 20 and 23; (3) H(2)O insertion reactions into the N→B structures 10, 14, 18, and 21 leading to the seven-membered intermolecular hydrogen-bonded B···OH(2)···N ring structures 11, 15, 19, and 22 are all energetically favorable.  相似文献   

14.
The intermolecular hydrogen bond N-H···S between indole and dimethyl sulfide is theoretically investigated. The formation of N-H···S hydrogen bonds between indole and dimethyl sulfide in ground and excited states is confirmed by the analysis of geometric structure, Mulliken charge, and infrared spectra. The result shows that the S(1) state of hydrogen bonded indole-Me(2)S is mainly a charger transfer state, while the S(2) state is a local excited state and also the state corresponding to the experiment. More importantly, it is demonstrated that the intermolecular hydrogen bond N-H···S of indole-Me(2)S is strengthened in the S(1) and S(2) states compared to that in ground state. Moreover, the strengthening of intermolecular N-H···S hydrogen bond in excited state induces the fluorescence emission peak of indole shifts to the red. These findings may provide insights for further study of N-H···S hydrogen bonds existing in many biomolecular systems.  相似文献   

15.
16.
2-Phenylethylamine (PEA) is the simplest aromatic amine neurotransmitter, as well as one of the most important. In this work, the conformational equilibrium and hydrogen bonding in liquid PEA were studied by means of Raman spectroscopy and theoretical calculations (DFT/MP2). By changing the orientation of the ethyl and the NH(2) group, nine possible conformers of PEA were found, including four degenerate conformers. Comparison of the experimental Raman spectra of liquid PEA and the calculated Raman spectra of the five typical conformers in selected regions (550-800 and 1250-1500 cm(-1)) revealed that the five conformers can coexist in conformational equilibrium in the liquid. The NH(2) stretching mode of the liquid is red-shifted by ca. 30 cm(-1) relative to that of an isolated PEA molecule (measured previously), implying that intermolecular N-H···N hydrogen bonds play an important role in liquid PEA. The relative intensity of the Raman band at 762 cm(-1) was found to increase with increasing temperature, indicating that the anti conformer might be favorable in liquid PEA at room temperature. The blue shift of the band for the bonded N-H stretch with increasing temperature also provides evidence of the existence of intermolecular N-H···N hydrogen bonds.  相似文献   

17.
Anharmonic vibrational frequency shifts of the phenol(+) O-H stretching mode upon complex formation with the open-shell ligand O(2) were computed at several DFT and MP2 levels of theory, with various basis sets, up to 6-311++G(2df,2pd). It was found that all DFT levels of theory significantly outperform the MP2 method with this respect. The best agreement with the experimental frequency shift for the hydrogen-bonded minimum on the potential energy surfaces was obtained with the HCTH/407 functional (-93.7 cm(-1) theoretical vs -86 cm(-1) experimental), which is a significant improvement over other, more standard DFT functionals (such as, e.g., B3LYP, PBE1PBE), which predict too large downshifts (-139.9 and -147.7 cm(-1), respectively). Good agreement with the experiment was also obtained with the mPW1B95 functional proposed by Truhlar et al. (-109.2 cm(-1)). We have attributed this trend due to the corrected long-range behavior of the HCTH/407 and mPW1B95 functionals, despite the fact that they have been designed primarily for other purposes. MP2 method, even with the largest basis set used, manages to reproduce only less than 50% of the experimentally detected frequency downshift for the hydrogen-bonded dimer. This was attributed to the much more significant spin contamination of the reference HF wave function (compared to DFT Kohn-Sham wave functions), which was found to be strongly dependent on the O-H stretching vibrational coordinate. All DFT levels of theory outperform MP2 in the case of computed anharmonic OH stretching frequency shifts upon ionization of the neutral phenol molecule as well. Besides the hydrogen-bonded minimum, DFT levels of theory also predict existence of two other minima, corresponding to stacked arrangement of the phenol(+) and O(2) subunits. mPW1B95 and PBE1PBE functionals predict a very slight blue shift of the phenol(+) O-H stretching mode in the case of stacked dimer with the nearly perpendicular orientation of oxygen molecule with respect to the phenolic ring, which is entirely of electrostatic origin, in agreement with the experimental observations of an additional band in the IR photodissociation spectra of phenol(+)-O(2) dimer [Patzer, A.; Knorke, H.; Langer, J.; Dopfer, O. Chem. Phys. Lett. 2008, 457, 298]. The structural features of the minima on the studied PESs were discussed in details as well, on the basis of NBO and AIM analyses.  相似文献   

18.
The present work aims to establish the utility of dispersion-corrected density functional theory for potential energy curves of the benzene dimer, a problem that has received significant attention for a long time. The interaction energies of parallel-stacked, T-shaped and parallel-displaced benzene dimer configurations have been evaluated using both dispersion- and normal gradient-corrected Perdew-Burke-Ernzerhof functionals along with Dunning's augmented correlation-consistent polarized valence triple-zeta (aug-cc-pVTZ) basis functions and compared with explicit correlation methods. The potential energy curves for the parallel-stacked and parallel-displaced benzene dimers are in excellent agreement with highly accurate coupled cluster (CCSD(T)) results, while for the T-shaped benzene dimer the dispersion-corrected results show a distinct deviation, being closer in that case to the MP2 level of results. The overestimation of interaction energy in the T-shaped dimer may be attributed to the presence of a permanent dipole moment in this configuration and indicates a structural dependence of the dispersion-corrected density functional method.  相似文献   

19.
The proton- and the sodium ion-bound glycine homodimers are studied by a combination of infrared multiple photon dissociation (IRMPD) spectroscopy in the N-H and O-H stretching region and electronic structure calculations. For the proton-bound glycine dimer, in the region above 3100 cm (-1), the present spectrum agrees well with one recorded previously. The present work also reveals a weak, broad absorption spanning the region from 2650 to 3300 cm (-1). This feature is assigned to the strongly hydrogen-bonded and anharmonic N-H and O-H stretching modes. As well, the shared proton stretch is observed at 2440 cm (-1). The IRMPD spectra for the proton-bound glycine dimer confirms that the lowest energy structure is an ion-dipole complex between N-protonated glycine and the carboxyl group of the second glycine. This spectrum also helps to eliminate the existence of any of the higher-energy structures considered. The IRMPD spectrum for the sodium ion-bound dimer is a much simpler spectrum consisting of three bands assigned to the O-H stretch and the asymmetric and symmetric NH 2 stretching modes. The positions of these bands are very similar to those observed for the proton-bound glycine dimer. Numerous structures were considered and the experimental spectrum agrees with the B3LYP/6-31+G(d,p) predicted spectrum for the lowest energy structure, two bidentate glycine molecules bound to Na (+). Though some of the structures cannot be completely ruled out by comparing the experimental and theoretical spectra, they are energetically disfavored by at least 20 kJ mol (-1).  相似文献   

20.
Fifteen structures of the (H2)2 dimer have been investigated at the MP2/[4s3p] level. The SCF and MP2 (2nd order Møller-Plesser treatment) interaction energies have been corrected for the basis set superposition error. Only the T-shaped structure has been established as a minimum on the potential energy surface. Two equivalent T-shaped structures are connected by a saddle point with a rhomboid structure.Dedicated to Professor J. Koutecký on the occasion of his 65th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号