首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The site-specific recognition of abasic sites and single base bulges in duplex DNA by sterically expansive rhodium metalloinsertors has been investigated. Through DNA photocleavage experiments, Rh(bpy)2(chrysi)3+ is shown to bind both abasic sites and single base bulges site-specifically and, upon irradiation, to cleave the backbone of the defect-containing DNA. Photocleavage titrations reveal that the metal complex binds DNA containing an abasic site with high affinity (2.6(5) x 106 M-1), comparably to the metalloinsertor and a CC mismatch. The complex binds single base bulge sites with lower affinity (approximately 105 M-1). Analysis of cleavage products and the correlation of affinities with helix destabilization suggest that Rh(bpy)2(chrysi)3+ binds both lesions via metalloinsertion, as observed for Rh binding at mismatched sites, a binding mode in which the mismatched or unpaired bases are extruded from the helix and replaced in the base stack by the sterically expansive ligand of the metalloinsertor.  相似文献   

2.
Removal of nucleobases from the DNA backbone leads to the formation of abasic sites. The rate of abasic site formation is significantly increased for chemically damaged nucleobases. Thus, abasic sites serve as general biomarkers for the quantification of DNA damage. Herein, we show that capillary electrophoresis with laser-induced fluorescence (CE-LIF) can be used to detect the amount of abasic sites with very high sensitivity. For proof of concept, DNA was incubated with methylmethane sulfonate (MMS) and the damaged bases were removed by incubation at 80 °C. The resulting abasic sites were then tagged with a fluorescent aldehyde-reactive probe (FARP). The DNA was precipitated with ethanol, and then analyzed by CE-LIF. CE-LIF and HPLC analysis shows that the fluorescently tagged DNA (DNA-FARP) had a peak area directly proportional to the amount of N-7 methyl guanines. The CE-LIF method had a detection limit of 1.2 abasic sites per 1,000,000 bases or ca. 20 attomoles of abasic sites. This provides a general method for detecting DNA damage that is not only faster but also has comparable or better sensitivity than the alternative ELISA-like method.  相似文献   

3.
Oligonucleotides (ONs) modified with a 2'-N-(pyren-1-yl)acetyl-2'-amino-alpha-L-LNA thymine monomer Y flanked on the 3'-side by an abasic site Phi (i.e., YPhi-unit) exhibit unprecedented increases in thermal affinity (DeltaT(m) values) toward target strands containing abasic sites (DeltaT(m) per YPhi unit >+33.0 degrees C in 9-mer duplexes relative to unmodified ONs). Biophysical studies along with force field calculations suggest that the conformationally locked 2-oxo-5-azabicyclo[2.2.1]heptane skeleton of monomer Y, in concert with the short rigid acetyl linker, efficiently forces the thymine and pyrene moieties to adopt an interplanar distance of approximately 3.4 A. This precisely positions the pyrene moiety in the duplex core void formed by abasic sites (Phi:Phi pair) for optimal pi-pi overlap. Duplexes with multiple YPhi: APhi units separated by one base pair are tolerated extraordinarily well, as exemplified by a 13-mer duplex containing four separated YPhi: APhi units (8 abasic sites distributed over 13 "base pairs"), which exhibit a thermal denaturation temperature of 60.5 degrees C. The YPhi probes display up to 16-fold increases in fluorescence intensity at 380 nm upon hybridization with abasic target strands, whereby self-assembly of these complex architectures can be easily monitored. This study underlines the potential of N2'-functionalized 2'-amino-alpha-L-LNA as building blocks in nucleic acid based diagnostics and nanomaterial engineering.  相似文献   

4.
DNA repeat domains can form ensembles of canonical and noncanonical states, including stable and metastable DNA secondary structures. Such sequence-induced structural diversity creates complex conformational landscapes for DNA processing pathways, including those triplet expansion events that accompany replication, recombination, and/or repair. Here we demonstrate further levels of conformational complexity within repeat domains. Specifically, we show that bulge loop structures within an extended repeat domain can form dynamic ensembles containing a distribution of loop positions, thereby yielding families of positional loop isomers, which we designate as "rollamers". Our fluorescence, absorbance, and calorimetric data are consistent with loop migration/translocation between sites within the repeat domain ("rollamerization"). We demonstrate that such "rollameric" migration of bulge loops within repeat sequences can invade and disrupt previously formed base-paired domains via an isoenthalpic, entropy-driven process. We further demonstrate that destabilizing abasic lesions alter the loop distributions so as to favor "rollamers" with the lesion positioned at the duplex/loop junction, sites where the flexibility of the abasic "universal hinge" relaxes unfavorable interactions and/or facilitates topological accommodation. Another strategic siting of an abasic site induces directed loop migration toward denaturing domains, a phenomenon that merges destabilizing domains. In the aggregate, our data reveal that dynamic ensembles within repeat domains profoundly impact the overall energetics of such DNA constructs as well as the distribution of states by which they denature/renature. These static and dynamic influences within triplet repeat domains expand the conformational space available for selection and targeting by the DNA processing machinery. We propose that such dynamic ensembles and their associated impact on DNA properties influence pathways that lead to DNA expansion.  相似文献   

5.
Biaryl derivatives that consist of one DNA‐intercalating unit and a sterically demanding component exhibit a specific behavior towards abasic site‐containing DNA (AP‐DNA) as determined by thermal DNA denaturation experiments, spectrometric titrations and CD spectroscopic analysis. Specifically, these ligands strongly stabilize AP‐DNA towards dissociation, whereas they do not or only marginally affect the melting temperature of regular duplex DNA.  相似文献   

6.
We hypothesize that programmable hybridization to noncanonical nucleic acid motifs may be achieved by macromolecular display of binders to individual noncanonical pairs (NCPs). As each recognition element may individually have weak binding to an NCP, we developed a semi-rational approach to detect low affinity interactions between selected nitrogenous bases and noncanonical sites in duplex DNA and RNA. A set of fluorogenic probes was synthesized by coupling abiotic (triazines, pyrimidines) and native RNA bases to thiazole orange (TO) dye. This probe library was screened against duplex nucleic acid substrates bearing single abasic, single NCP, and tandem NCP sites. Probe engagement with NCP sites was reported by 100–1000× fluorescence enhancement over background. Binding is strongly context-dependent, reflective of both molecular recognition and stability: less stable motifs are more likely to bind a synthetic probe. Further, DNA and RNA substrates exhibit entirely different abasic and single NCP binding profiles. While probe binding in the abasic and single NCP screens was monotonous, much richer binding profiles were observed with the screen of tandem NCP sites in RNA, in part due to increased steric accessibility. In addition to known binding interactions between the triazine melamine (M) and T/U sites, the NCP screens identified new targeting elements for pyrimidine-rich motifs in single NCPs and 2×2 internal bulges. We anticipate that semi-rational approaches of this type will lead to programmable noncanonical hybridization strategies at the macromolecular level.  相似文献   

7.
A family of simple pyrimidine analogues has been synthesized, and their photophysical properties have been investigated. The most responsive of the family was incorporated in DNA. This isosteric fluorescent DNA analogue monitors denaturation of a DNA duplex via fluorescence and positively detects the presence of abasic sites in DNA duplexes.  相似文献   

8.
Zhang H  Wang R  Tan H  Nie L  Yao S 《Talanta》1998,46(1):171-178
A simple, inexpensive, on-line bulk acoustic wave (BAW) DNA biosensor is proposed by using an Ag-plated surface rather than the conventional Au surface. Bovine serum albumin (BSA) is used as an active coating for DNA immobilization. Impedance analysis reveals that the film composed of didodecyl dithiono-oxamide (DDDTO) and BSA can dramatically enhance the amount of immobilized DNA. Detection of dissociation and hybridization of immobilized DNA is demonstrated as an example of the potential application of this type of acoustic wave DNA biosensor in clinical practice.  相似文献   

9.
The fluorescence of a new aminocyanonaphthalene exhibits exquisite sensitivity to its environment and responds to a solvent change from water to hexane with greater than a 100-fold increase in intensity and 100 nm shift in λ(max.em). These properties should support many applications including the detection of abasic sites within duplex DNA as illustrated below.  相似文献   

10.
In this study, we investigated the stability and structure of artificial base pairs that contain cyclohexyl rings. The introduction of a single pair of isopropylcyclohexanes into the middle of DNA slightly destabilized the duplex. Interestingly, as the number of the "base pairs" increased, the duplex was remarkably stabilized. A duplex with six base pairs was even more stable than one containing six A-T pairs. Thermodynamic analysis revealed that changes in entropy and not enthalpy contributed to duplex stability, demonstrating that hydrophobic interactions between isopropyl groups facilitated the base pairing, and thus stabilized the duplex. NOESY of a duplex containing an isopropylcyclohexane-methylcyclohexane pair unambiguously demonstrated its "pairing" in the duplex because distinct NOEs between the protons of cyclohexyl moieties and imino protons of both of the neighboring natural base pairs were observed. CD spectra of duplexes tethering cyclohexyl moieties also showed a positive-negative couplet that is characteristic of the B-form DNA duplex. Taken together, these results showed that cyclohexyl moieties formed base pairs in the DNA duplex without severely disturbing the helical structure of natural DNA. Next, we introduced cyclohexyl base pairs between pyrene and nucleobases as an "insulator" that suppresses electron transfer between them. We found a massive increase in the quantum yield of pyrene due to the efficient shielding of pyrene from nucleobases. The cyclohexyl base pairs reported here have the potential to prepare highly fluorescent labeling agents by multiplying fluorophores and insulators alternately into DNA duplexes.  相似文献   

11.
A new method was developed to allow direct visualization of damaged sites on individual DNA molecules. Fluorescence in situ hybridization on extended DNA molecules was modified to detect a single abasic site. Abasic sites were specifically labeled with a biotinylated aldehyde-reactive probe and fluorochrome-conjugated streptavidin. The light emitted by a single fluorochrome-DNA complex was calibrated. The number of abasic sites on the DNA molecule was estimated by counting each fluorochrome-DNA complex. The present study directly visualized and characterized the abasic sites of single DNA molecules.  相似文献   

12.
The aim of this study is to develop a selective adenosine aptamer sensor using a rational approach. Unlike traditional RNA aptamers developed from SELEX, duplex DNA containing an abasic site can function as a general scaffold to rationally design aptamers for small aromatic molecules. We discovered that abasic site-containing triplex DNA can also function as an aptamer and provide better affinity than duplex DNA aptamers. A novel adenosine aptamer sensor was designed using such a triplex. The aptamer is modified with furano-dU in the binding site to sense the binding. The sensor bound adenosine has a dissociation constant of 400 nM, more than tenfold stronger than the adenosine aptamer developed from SELEX. The binding quenched furano-dU fluorescence by 40%. It was also demonstrated in this study that this sensor is selective for adenosine over uridine, cytidine, guanosine, ATP, and AMP. The detection limit of this sensor is about 50 nM. The sensor can be used to quantify adenosine concentrations between 50 nM and 2 μM.  相似文献   

13.
We use molecular modeling calculations to study the structure and the flexibility of abasic (AP sites) and for the design of anticancer drugs targeted against AP sites. For either adenine or cytosine on the opposing strand within the same sequence context, the results are in line with experimental data which show that the two unpaired bases lead to intrahelical forms, but with differences in induced curvature. Results on flexibility, indicate that the two duplexes have the same bending rigidity for cytosine. In previous work a series of polyfunctional molecules, such as ATAc, were designed to selectively recognize and cleave abasic sites in DNA. The nitrobenzamide group which was added to the ATAc molecule to obtain a new molecule, termed ATAc4, can induce a second lesion under irradiation in close proximity to the abasic site. The different conformations of ATAc4 interacting with a DNA oligomer containing a stable analog of the abasic site were compared to the photoinduced cleavage pattern observed experimentally. Received: 16 September 1999 / Accepted: 3 February 2000 / Published online: 12 May 2000  相似文献   

14.
Abasic lesions, which are formed endogenously and as a consequence of exogenous agents, are lethal and mutagenic. Hydrogen atom abstraction from C2' in DNA under aerobic conditions produces an oxidized abasic lesion (C2-AP), along with other forms of DNA damage. The effects of C2-AP on DNA structure and function are not well understood. A method for the solid-phase synthesis of oligonucleotides containing C2-AP lesions is reported. The lesion is released via periodate oxidation of a triol containing a vicinal diol. The triol is introduced via a phosphoramidite that is compatible with standard oligonucleotide synthesis and deprotection conditions. UV-melting studies indicate that the C2-AP lesion has a comparable effect on the thermal stability of duplex DNA as other abasic lesions. The C2-AP lesion is rapidly cleaved by piperidine at 90 degrees C. However, cleavage by NaOH (0.1 M, 37 degrees C) shows that C2-AP is considerably less labile (t(1/2) = 3.3 +/- 0.2 h) than other abasic lesions.  相似文献   

15.
Six different ribonucleoside phosphoramidites with fluorobenzenes or fluorobenzimidazoles as base analogues, one abasic site, and inosine were synthesized and incorporated into oligoribonucleotides. The oligomers were investigated by means of UV and CD spectroscopy to assess the contribution of H‐bonding, base stacking, and solvation to the stability of the RNA duplex. CD Spectra show that the incorporation of modified nucleosides does not lead to changes in the structure of RNA. The Tm differences determined are based on changes in base stacking and solvation. Individual contributions of base stacking and solvation of the modified nucleosides could be determined. In fluorobenzene⋅fluorobenzimidazole‐modified base pairs, a duplex‐stabilizing force was found that points to a weak F⋅⋅⋅H H‐bond.  相似文献   

16.
[structure: see text] The synthesis of a chemiluminescent acridinium hydroxylamine (AHA) for the direct detection of abasic sites in damaged nucleic acids is described. The reagent reacts readily with abasic sites of damaged calf thymus DNA generated in a time-dependent manner under acid/heat depurination conditions. Preliminary results indicate the sensitivity of the direct chemiluminescent detection format is approximately 0.1 abasic sites detected per 10(6) nucleotides using as little as 200 ng of DNA.  相似文献   

17.
A novel hydrogen bond-forming ligand for pyrimidine/purine transversion, which contains both a fluorescent naphthyridine moiety and a ferrocenyl group as an electrochemical indicator, is described. Hydrogen bond-mediated recognition for a target nucleobase at an abasic site in a DNA duplex is confirmed by both fluorescence and electrochemical measurements. The analysis by fluorescence titration reveals that the ligand shows significant fluorescent quenching upon formation of a 1 : 1 complex with the target nucleobase opposite the abasic site, and the selectivity is in the order of cytosine > thymine > adenine, guanine, reflecting the stability of the hydrogen bond formation.  相似文献   

18.
The automated on-line synthesis of DNA-3′-PNA (PNA=Polyamide Nucleic Acids) chimeras 1 – 3 is described, in which the 3′-terminal part of the oligonucleotide is linked to the aminoterminal part of the PNA either via a N-(2-mercaptoethyl)- (X=S), a N-(2-hydroxyethyl)- (X=O), or a N-(2-aminoethyl)- (X=NH) N-[(thymin-1-yl)acetyl]glycine unit. Furthermore, the DNA-3′-PNA chimera 4 without a nucleobase at the linking unit was prepared. The binding affinities of all chimeras were directly compared by determining their Tm values in the duplex with complementary DNA, RNA, or DNA containing a mismatch or abasic site opposite to the linker unit. We found that all investigated chimeras with a nucleobase at the junction form more stable duplexes with complementary DNA and RNA than the corresponding unmodified DNA. The influence of X on duplex stabilization was determined to be in the order O>S≈NH, rendering the phosphodiester bridge the most favored linkage at the DNA/PNA junction. The observed strong duplex-destabilizing effects, when base mismatches or non-basic sites were introduced opposite to the nucleobase at the DNA/PNA junction, suggest that the base at the linking unit contributes significantly to duplex stabilization.  相似文献   

19.
To investigate the structural basis of the unique hybridization properties of LNA (locked nucleic acid) three novel LNA derivatives with modified carbohydrate parts were synthesized and evaluated with respect to duplex stabilities. The abasic LNA monomer (X(L), Figure 1) with the rigid carbohydrate moiety of LNA but no nucleobase attached showed no enhanced duplex stabilities compared to its more flexible abasic DNA counterpart (X, Figure 1). These results suggest that the exceptional hybridization properties of LNA primarily originate from improved intrastrand nucleobase stacking and not backbone preorganization. Two monocyclic seco-LNA derivatives, obtained by cleavage of the C1'-O4' bond of an LNA monomer or complete removal of the O4'-furanose oxygen atom (Z(L) and dZ(L), respectively, Figure 1), were compared to their acyclic DNA counterpart (Z, Figure 1). Even though they are more constrained than Z, the seco-LNA derivatives Z(L) and dZ(L) destabilize duplex formation even more than the flexible seco-DNA monomer Z.  相似文献   

20.
Zhang QD  Piro B  Noël V  Reisberg S  Pham MC 《The Analyst》2011,136(5):1023-1028
We report here a new strategy to graft both redox and DNA probes on carbon nanotubes to make a label-free DNA sensor. Oxidized single-walled carbon nanotubes are first immobilized on a self-assembled monolayer of cysteamine; then the redox probe, a quinone derivative 3-[(2-aminoethyl)sulfanyl-5-hydroxy-1,4-naphthoquinone], is grafted on the free carboxylic groups of the nanotubes. After that, for DNA probe grafting, new carboxylic sites are generated via an aryl diazonium route. After hybridization with a complementary sequence, the conformational changes of DNA could influence the redox kinetics of quinone, leading to a current increase of the redox signal, detected by square wave voltammetry. The system is selective, as it can discriminate a single mismatched sequence from the complementary one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号